Integrated Reinforcement Learning

Derya Cansever US Army Research Office

Army Research Office

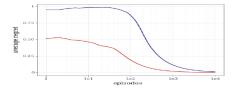
ARO has 45 Programs focused on Science Organized in 11 Competencies (areas)

Sciences of Extreme Materials	Humans in Complex Systems	Electromagnetic Spectrum Sciences
Photonics, Electronics, and Quantum Sciences	Network, Cyber, and Computational Sciences	Energy Sciences
Military Information Sciences	Terminal Effects	Mechanical Sciences
Biological and Biotechnology Sciences	Weapons Sciences	

Multi-Agent Network Control Program

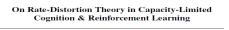
The objective of the Multi-Agent Network Control program is to establish the physical, mathematical and information processing foundations for the control of complex dynamic networks with possibly multiple controllers that may operate using different information sets.

- Distributed and Time-Varying Control of Networked Systems
- Data Driven Control and learning
- Control of Quantum Systems and novel applications of control theory


ARO Grant Types

Award Type	Target	Funding
Single Investigator (SI)	Single-laboratory projects	~\$141K/year for ~3.4 years avg*
Short Term Innovative Research (STIR)	Very high-risk pilot projects	\$60K for 9 mo.
Early Career Awards (formerly Young Investigator Program)	Early-career PIs	\$120K/year for 3 years
Conferences / Workshops / Symposia	Academic State of Science	\$10K–\$30K
Presidential Early Career Award for Scientists and Engineers (PECASE)	Promising future leaders	\$200K/year for 5 years
Defense University Research Instrumentation Program (DURIP)	Instrumentation	\$200K/year average FY22
Multidisciplinary University Research Initiative (MURI)	Large multidisciplinary programs	~\$1.25M/year up to 5 years
Historically Black College/University and Minority Institution (HBCU/MI)	Minority serving institutions	~\$140K/year for 3 years
Small Business Technology Transfer (STTR)	Multi-phase awards bridging academia & industry	\$150K (6 mo.) to \$1M (24 mo.)
Small Business Innovative Research (SBIR)	Multi-phase research for industry transition	\$150K (6 mo.) to \$1M (24 mo.)

Reasons for Celebration of Reinforcement Learning


- Performance way beyond human capabilities with an algorithm based solely on reinforcement learning, without human data, guidance or domain knowledge beyond game rules.
- On solid theoretical foundation
- Significant progress in RL algorithm performance.
- Encouraging progress in optimal data selection for RL.

Mastering the game of Go without human knowledge

David Silver¹*, Julian Schrittwieser¹*, Karen Simonyan¹*, Ioannis Antonoglou¹, Aja Huang¹, Arthur Guez¹, Thomas Hubert¹, Lucas Baker¹, Matthew Lai¹, Adrian Bolton¹, Yutian Chen¹, Timothy Lillicrap¹, Fan Hui¹, Laurent Sifre¹, George van den Driessche¹, Thore Graepel¹ & Benis Hassabi²

Dillp Arimiugan Sunford University 1111pees_stanford.edu ab D. Goodman ment of Psychology ment of Psychology Department of Electrical Engineering Department of Electrical Engineering

Department of Management Science & Engineeri Stanford University bvr@stanford.edu

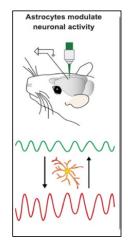
And many more amazing fundamental contributions and applications of RL

A Reason for More Work in Reinforcement Learning

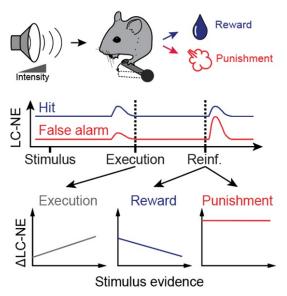
Human Brain: 20 W

Google AlphaZero TPUs: 1 MW

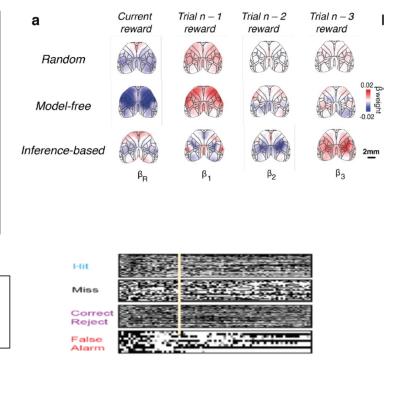
- 4-5 order of magnitudes difference in power requirements.
- Does the difference in performance commensurate with power consumption?
- Study of the brain may inspire further advances in RL.


Novel Mechanisms of Neuro-Glia Bio-Computation and Reinforcement Learning

ARO initiated MURI Topic performed by



 Astrocytes are believed to be essential to RL, through temporal calcium dynamics, and their interaction with synapses, neurons and neuro-modulatory systems



Experiments with Rodents

Observations

- Rodents exhibit a mixture of both modelfree and inference (model) based strategies in RL.
- Both strategies may co-exist in the same task.
- Inference-based behavior increases with training.
- Learning occurs at different parts of the brain simultaneously.
- Astrocyte signals consistent with control and coordination functions of neuron activities

In nature, RL appears to be distributed, hierarchical, multi-mode and integrated.