ECE 580, Optimization by Vector Space Methods Assignment # 1

Issued: January 16

Reading Assignment:

Luenberger, Chapters 1 & 2.

Reminder:

Class is cancelled Jan. 21 & 23.

Problems:

- 1 Prove that the union of any number of open sets is open, and that the intersection of a finite number of open sets is open
- 2 Let X be a normed vector space, and let X^n denote the vector space consisting of n vectors of the form $(x_1, \ldots, x_n)^T$. For given $y \in X$ and $x \in X^n$, prove that there is a vector $a^* \in \mathbb{R}^n$ that achieves the minimum,
 - $\min_{a} \|y a^{\mathrm{T}}x\|$
- 3 The normed vector space X is called *strictly normed* if ||x + y|| = ||x|| + ||y|| implies that $y = \theta$, or $x = \alpha y$ for some scalar α .
 - (i) Show that $L_p[0,1]$ is strictly normed for 1 .
 - (ii) Show by example that $L_p[0,1]$ is not strictly normed for p=1 or $p=\infty$.
 - (iii) Show that a^* in the previous problem is unique when X is strictly normed.
- 4 Let $L_1[0,1]$ denote the vector space of integrable functions on [0,1], and C[0,1] the space of continuous functions in the supremum norm. Consider the sequence of continuous functions defined by,

 $x_n(t) = \min(1, \max(0, 1 - 2^n(t - \frac{1}{2})))$

Is this sequence Cauchy in $L_1[0,1]$? In C[0,1]? Is the sequence convergent in one of these normed vector spaces?

- 5 For any real sequence x prove that $\lim_{p\to\infty} ||x||_p = ||x||_\infty$.
- 6 Read about the Contraction Mapping Theorem, and prove the following corollary:

Let S be a closed subset of a Banach space. Let T be a mapping from S to X that is *expansive*: For some constant k > 1,

 $||T(x) - T(y)|| \ge k||x - y||, \qquad x, y \in S.$

Then T has a unique fixed point.

Hint: First prove that the mapping T has an inverse if it is expansive.