Issued: January 30

Reading Assignment:

Luenberger, Section 10.2, and begin Chapter 3.

Problems:

7 Let's return to Problem #2 of Assignment 1. Let $X = L_p[0, 1]$, and define three elements of this Banach space, denoted x^1, x^2 , and y, with

$$x^{1}(t) = 1, \ x^{2}(t) = t, \ y(t) = t^{2}, \qquad t \in [0, 1].$$

For $a \in \mathbb{R}^2$ we denote $\hat{y}^a = a_1 x^1 + a_2 x^2 \in \mathsf{X}$, which is interpreted as an approximation to y. Compute the best approximation: The vector $a^* \in \mathbb{R}^2$ that achieves the minimum, $\min_a ||y - \hat{y}^a||$.

- (i) Solve for p = 2 (the Hilbert space case).
- (ii) Solve for $p = \infty$. For this it may be easier to consider the representation in terms of the vector b,

$$y(t) - \hat{y}^{a}(t) = t^{2} - a_{1} - a_{2}t = (t - b_{2})^{2} - b_{1}$$

What values of b_1, b_2 will minimize the L_{∞} norm?

- (iii) Consider the general approximation problem with $y(t) = t^n$, $x^i(t) = t^{i-1}$ for i = 1, ..., n and $t \in [0, 1]$. For what values of p could you obtain an expression for a^* ? You do not have to compute anything, just explain your reasoning.
- 8 Luenberger Prob. 10.3
- 9 Luenberger Prob. 10.4