Reading Assignment:

Luenberger, Section 10.2, and begin Chapter 3.

Problems:

7 Let's return to Problem \#2 of Assignment 1. Let $\mathrm{X}=L_{p}[0,1]$, and define three elements of this Banach space, denoted x^{1}, x^{2}, and y, with

$$
x^{1}(t)=1, x^{2}(t)=t, y(t)=t^{2}, \quad t \in[0,1] .
$$

For $a \in \mathbb{R}^{2}$ we denote $\hat{y}^{a}=a_{1} x^{1}+a_{2} x^{2} \in \mathrm{X}$, which is interpreted as an approximation to y. Compute the best approximation: The vector $a^{*} \in \mathbb{R}^{2}$ that achieves the minimum, $\min _{a}\left\|y-\hat{y}^{a}\right\|$.
(i) Solve for $p=2$ (the Hilbert space case).
(ii) Solve for $p=\infty$. For this it may be easier to consider the representation in terms of the vector b,

$$
y(t)-\hat{y}^{a}(t)=t^{2}-a_{1}-a_{2} t=\left(t-b_{2}\right)^{2}-b_{1}
$$

What values of b_{1}, b_{2} will minimize the L_{∞} norm?
(iii) Consider the general approximation problem with $y(t)=t^{n}, x^{i}(t)=t^{i-1}$ for $i=1, \ldots, n$ and $t \in[0,1]$. For what values of p could you obtain an expression for a^{*} ? You do not have to compute anything, just explain your reasoning.

8 Luenberger Prob. 10.3
9 Luenberger Prob. 10.4

