A. Problem 1

We will derive an upperbound for the following quantities

$$
\limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{t=0}^{n-1} P^{t} \bar{c}
$$

for the cases where $\bar{c}=x$ and $\bar{c}=x^{2}$. The former is the steady-state mean queue length and the latter is the steady-state second-moment.

To derive an upper-bound, we use the following result:
Lemma 0.1: If

$$
P V \leq V-\bar{c}+\eta
$$

where V is a nonnegative function that is finite for each x, then

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{t=0}^{n-1} P^{t} \bar{c} \leq \eta \tag{1}
\end{equation*}
$$

Proof: We iterate the first inequality:

$$
P^{2} V \leq P V-P \bar{c}+P \eta \leq V-\bar{c}+\eta-P \bar{c}+P \eta=V-(c+P \bar{c})+2 \eta
$$

where we use the equality $P \eta=\eta$ since η is a constant function. Repeat this, we obtain

$$
P^{n} V \leq V-\sum_{t=0}^{n-1} P^{t} \bar{c}+n \eta
$$

On rearanging terms and divide both sides by n, we obtain

$$
\frac{1}{n} \sum_{t=0}^{n-1} P^{t} \bar{c} \leq \eta+\frac{1}{n} V-\frac{1}{n} P^{n} V
$$

Since V is a nonnegative function, we obtain $P^{n} V \geq 0$. By taking the limit as $n \rightarrow \infty$, we obtain the desired inequality.

We now calculate $P g$.

$$
\begin{aligned}
\operatorname{Pg}(x) & =\mathrm{E}[g(Q(k+1) \mid Q(k)=x] \\
& =E[g(x-\delta x+A)] \\
& =E\left[a(x-\delta x+A)^{2}+b(x-\delta x+A)+c\right] \\
& =a(1-\delta)^{2} x^{2}+2 a(1-\delta) x E[A]+a E\left[A^{2}\right]+b(1-\delta) x+b E[A]+c \\
& =a(1-\delta)^{2} x^{2}+(b(1-\delta)+2 a(1-\delta) E[A]) x+\left(a E\left[A^{2}\right]+b E[A]+c\right)
\end{aligned}
$$

We need to make a good choice of (a, b, c) for each case.
Case 1: $\bar{c}=x$. Take $a=0, b=1 / \delta, c=0$, we obtain

$$
P g(x) \leq g(x)-x+\frac{1}{\delta} \mathrm{E}[A]
$$

Uppon applying the inequality (1), we obtain

$$
\limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{t=0}^{n-1} P^{t} \bar{c} \leq \frac{1}{\delta} \mathrm{E}[A]
$$

Case 2: $\bar{c}=x^{2}$. Take $a=\frac{1}{2 \delta-\delta^{2}}, b=\frac{2 a(1-\delta) E[A]}{\delta}, c=0$, we obtain

$$
P g(x) \leq g(x)-x^{2}+\frac{1}{2 \delta-\delta^{2}} E\left[A^{2}\right]+\frac{2(1-\delta)}{\delta\left(2 \delta-\delta^{2}\right)} E[A]^{2}
$$

Uppon applying the inequality (1), we obtain

$$
\limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{t=0}^{n-1} P^{t} \bar{c} \leq \frac{1}{2 \delta-\delta^{2}} E\left[A^{2}\right]+\frac{2(1-\delta)}{\delta\left(2 \delta-\delta^{2}\right)} E[A]^{2}
$$

Note that the second moment is an upperbound on the variance, so the above bound is also an upper-bound on the variance. Besides, we can also make the conjecture that the steady-state variance to be

$$
\frac{1}{2 \delta-\delta^{2}} E\left[A^{2}\right]+\frac{2(1-\delta)}{\delta\left(2 \delta-\delta^{2}\right)} E[A]^{2}-\left(\frac{1}{\delta} \mathrm{E}[A]\right)^{2}=\frac{1}{2 \delta-\delta^{2}} \sigma_{A}^{2}
$$

B. Problem 2

(a)

$$
\mu P=\left[\frac{9}{10} \mu_{1}+\frac{1}{4} \mu_{2}, \frac{1}{10} \mu_{1}+\frac{3}{4} \mu_{2}\right]
$$

We construct the invariant measure, we first solve the equations $\pi P=\pi, \pi_{1}+\pi_{2}=1$. Substituite the above formula for μP into these equations, we have

$$
\begin{aligned}
\frac{9}{10} \pi_{1}+\frac{1}{4} \pi_{2} & =\pi_{1} \\
\frac{1}{10} \pi_{1}+\frac{3}{4} \pi_{2} & =\pi_{2} \\
\pi_{1}+\pi_{2} & =1
\end{aligned}
$$

From this, we obtain $\pi_{1}=\frac{5}{7}, \pi_{2}=\frac{2}{7}$.
(b) By solving $\operatorname{det}(I-\lambda P)=0$, we could obtain that P have eigenvalues λ_{1} and $\lambda_{2}=\frac{13}{20}$. By solving $\mu P=\lambda_{i} \mu$ for $i=1,2$, we obtain that a pair of the left eigenvectors of P are given
by $\mu^{1}=\left[\frac{5}{7}, \frac{2}{7}\right]$ and $\mu^{2}=[1,-1]$. A pair of the right eigen vectors that also satisfies $\mu^{1} \nu^{1}=1$ and $\mu^{2} \nu^{2}=1$ are given by $\nu^{1}=[1,1]^{T}$ and $\nu^{2}=\left[\frac{2}{7},-\frac{5}{7}\right]^{T}$. Note that from $\lambda \neq \lambda_{2}$, we obtain $\mu^{1} \nu^{2}=0$ and $\mu^{2} \nu^{1}=0$. Thus, we have the following decomposition of P :

$$
P=\lambda_{1} \nu^{1} \mu^{1}+\lambda_{2} \nu^{2} \mu^{2}
$$

(c) It is easy to see that

$$
P^{n}=\left(\lambda_{1} \nu^{1} \mu^{1}+\lambda_{2} \nu^{2} \mu^{2} P\right) P^{n-2}=\left(\lambda_{1}^{2} \nu^{1} \mu^{1}+\lambda_{2}^{2} \nu^{2} \mu^{2}\right) P^{n-2} .
$$

By induction it is easy to see that

$$
P^{n}=\lambda_{1}^{n} \nu^{1} \mu^{1}+\lambda_{2}^{n} \nu^{2} \mu^{2}
$$

Since $\lambda_{2}<1$, as $n \rightarrow \infty$, the second term vanishes. Consequently,

$$
\lim _{n \rightarrow \infty} P^{n}=\nu^{1} \mu^{1}=\mathbf{1} \pi
$$

The convergence is geometric with rate λ_{2}, i.e.,

$$
\left\|P^{n+1}-\mathbf{1} \pi\right\|=\lambda_{2}\left\|P^{n}-\mathbf{1} \pi\right\|
$$

which holds for any matrix norm.
(d) Let us take $R_{\gamma}=\sum_{t=0}^{\infty}(1+\gamma)^{-t+1} P^{t}$ and verify it satisfies $R_{\gamma}=[(1+\gamma) I-P]^{-1}$.

$$
\begin{aligned}
{[(1+\gamma) I-P] R_{\gamma} } & =(1+\gamma) R-P R \\
& =\sum_{t=0}^{\infty}(1+\gamma)^{-t} P^{t}-\sum_{t=0}^{\infty}(1+\gamma)^{-t+1} P^{t+1} \\
& =(1+\gamma)^{-0} P^{0}=I
\end{aligned}
$$

We can also write R_{γ} using the spectral decomposition of P.

$$
\begin{aligned}
R_{\gamma} & =\sum_{t=0}^{\infty}\left[(1+\gamma)^{-t+1} \lambda^{t} \nu^{1} \mu^{1}+(1+\gamma)^{-t+1} \lambda_{2}^{t} \nu^{2} \mu^{2}\right] \\
& =(1+\gamma)^{-1}\left[\left(\sum_{t=0}^{\infty}\left(\frac{\lambda_{1}}{1+\gamma}\right)^{t}\right) \nu^{1} \mu^{1}+\left(\sum_{t=0}^{\infty}\left(\frac{\lambda_{2}}{1+\gamma}\right)^{t}\right) \nu^{2} \mu^{2}\right. \\
& =\frac{1}{1+\gamma-\lambda_{1}} \nu^{1} \mu^{1}+\frac{1}{1+\gamma-\lambda_{2}} \nu^{2} \mu^{2}
\end{aligned}
$$

(e) Many choices will make $[I-(P-w v)]$ invertible. We choose $w=\left[\frac{1}{10}, \frac{1}{4}\right]^{T}$ and $v=[1,1]$. We obtain

$$
I-(P-w v)=\left[\begin{array}{cc}
\frac{1}{5} & 0 \\
0 & \frac{1}{2}
\end{array}\right]
$$

Thus,

$$
Z=\left[\begin{array}{ll}
5 & 0 \\
0 & 2
\end{array}\right]
$$

and

$$
v Z=\left[\frac{5}{4}, 2\right]=7 \pi
$$

