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Solutions

Exercises:

3 Consider the linear state space model on R
2,

X(t + 1) = AX(t) + E(t + 1)

where the eigenvalues of A are strictly less than one. It is assumed that E is i.i.d., with
zero-mean and finite variance. A course on linear systems theory will tell you that for any
matrix Q > 0, there is a solution to the discrete-time Lyapunov equation ATMA = M−Q,
where the 2 × 2 matrix M is positive definite.

(i) Obtain a solution to Poisson’s equation with c(x) = xTQx.

(ii) Obtain a solution to Foster’s criterion using the Lyapunov function V (x) = a log(1+
h(x)), where a > 0 is a constant, and h is your solution to (i).

Solution: (i) We use the zero mean assumption to conclude that a quadratic will solve
the equation:

V (x) = xT Mx + b,

with b ≥ 0 arbitrary, and M > 0 to be chosen.

DV (x) = E[X(t + 1)T MX(t + 1) − X(t)T MX(t)|X(t) = x]

= E[(Ax + E(1))T (Ax + E(1)) − xT Mx]

= (xT AT MAx + σ2

M − xT Mx),

where σ2

M = E[E(1)T ME(1)]. Hence from the Lyapunov equation ATMA = M − Q we
conclude that

DV (x) = −‖x‖2 + σ2

M

We obtain a solution to Poisson’s equation with η = σ2

M .

(ii) For simplicity we assume that h(x) = xT Mx in (i) is obtained with Q = I. That is,
b = 0 and ATMA = M − I.

With V (x) = a log(1 + h(x)) we have,

DV (x) = aE[log(1 + h(X(t + 1)) − log(1 + h(X(t)))|X(t) = x].

Jensen’s Inequality gives the upper bound:

DV (x) ≤ a log(E[1 + h(X(t + 1))|X(t) = x]) − V (x)

Applying (i) we obtain

DV (x) ≤ a
(

log(1 + h(x) − ‖x‖2 + σ2

M)
)

− V (x)



Concavity of the log gives

log(a + b) ≤ log(a) +
b

a
, for all a, b.

Hence,

DV (x) ≤ a
(

log(1 + h(x))) +
−‖x‖2 + σ2

M

1 + h(x)

)

− V (x)

= a
−‖x‖2 + σ2

M

1 + h(x)

Choose ε > 0 such that ‖x‖2 ≥ εh(x) = εxT Mx for all x. Then, the right hand side of
the previous bound can be manipulated to obtain

DV (x) ≤ a

(

−εh(x) + σ2

M

1 + h(x)

)

= a

(

−ε(1 + h(x)) + ε + σ2

M

1 + h(x)

)

≤ −
ε

2
a provided 1 + h(x) ≥ 2

(

ε + σ2

M

ε

)

.

Conclusion: Foster’s criterion holds provided a ≥ 2

ε
.

4 Suppose that R is a non-negative N × N matrix: This means that Rij ≥ 0 for each
1 ≤ i ≤ N . Suppose that s is a column vector, ν is a row vector, satisfying νs > 0, and
R ≥ s ⊗ ν. That is, Rij ≥ siνj for each i, j. Finally, suppose that r > 0 is a solution to
the equation,

νGs = 1 where G =

∞
∑

k=0

r−k−1(R − s ⊗ ν)k (1)

Using the ideas of the lecture on January 27, show that µ = νG and h = Gs are left and
right eigenvectors of R:

µR = rµ, Rh = rh

Notes: This construction is part of the celebrated theory of Perron & Frobenius — begun
approximately one hundred years ago. The scalar r is the PerronFrobenius eigenvalue.

A typical systems application uses Rij = efiPij , where P is a transition matrix, and
f is envisioned as a function on the state space. The eigenvalue r is a value of the
moment generating function found in risk-sensitive control and in large deviations theory
for Markov chains. Why? Because in this case,

Rn
ij = E

[

exp(

n−1
∑

t=0

f(X(t)))1(X(n) = j) | X(0) = i
]



Solution: We just prove the result for h — the eigenvector property for µ is proved using
the same arguments.

We have the following identity from the definition of G in (1):

r−1(R − s ⊗ ν)G =
∞

∑

k=1

r−k−1(R − s ⊗ ν)k

That is, r−1(R − s ⊗ ν)G = G − r−1I. Multiplying on the right by s gives,

r−1(R − s ⊗ ν)Gs = Gs − r−1s

Since νGs = 1 this means that r−1(RGs− s) = Gs− r−1s. Canceling common terms and
substituting h = Gs proves the result.

5 Suppose that there exists a function s and a probability distribution ν on X satisfying
P = s ⊗ ν (that is, P (x, y) = s(x)ν(y) for each x, y ∈ X.) Show that s ≡ 1, ν is an
invariant measure, and hence X is i.i.d. with marginal distribution ν.

Solution: First, show s ≡ 1: Since ν is a probability measure,

1 = P (x,X) = s(x)ν(X) = s(x).

Next, X is iid:

P (X(t + 1) = x|X(t) = x0,X(t − 1) = x1, . . .) = P(X(t + 1) = x|X(t) = x0)

= ν(x), independent of x0, x1, . . . .

This implies that X is iid, with marginal ν.

6 Suppose that the minorization condition holds, P ≥ s ⊗ ν, with s(x) ≡ ǫ > 0 constant.
This is a form of Doeblin’s condition1. Observe that Q(x, y) := [P (x, y) − ǫν(y)]/(1 − ǫ)
is a transition matrix (let’s stick to a countable state space for simplicity). Doeblin’s
condition can be equivalently expressed P = ǫ1 ⊗ ν + (1 − ǫ)Q, or

P (x, y) = ǫν(y) + (1 − ǫ)Q(x, y), x, y ∈ X

Show that G(x,X) ≤ ǫ−1 for all x, where the potential kernel is given by,

G =

∞
∑

k=0

(P − s ⊗ ν)k.

Is there an invariant probability measure?

Solution: This is establish as in lecture:

Gs =
∞
∑

k=0

(P − s ⊗ ν)ks ≤ 1 everywhere.

1Wolfgang Doeblin was a remarkable person. Just 10 years ago, his sealed manuscript was opened which

revealed that he developed the theory of stochastic differential equations while fighting the Germans in WW2!

His formulation predates Ito, and is also simpler.



Since s(x) = ε for all x, this means

εG(x,X) ≤ 1 for all x.

We have seen in lecture that µ = νG is invariant. It also has finite mass:

µ(X) = νG1 ≤ ε−1ν1 = ε−1.

So π = µ/µ(X) is an invariant probability.

Note: This condition is somewhat stronger than Doeblin’s condition. The minorization
with s constant implies that the chain is uniformly ergodic:

lim
n→∞

sup
A

sup
x

|Pn(x,A) − π(A)| = 0

There is a simple proof based on coupling – See CTCN, or ask me!


