ECE 555
Issued: February 11

Assignment \# 3
Due: February 22, 2011

Reading: Begin Chapter 9 of CTCN.

Exercises:

7 Reversibility The M/M/1 queue in discrete time is defined by $Q(t+1)=[Q(t)-S(t+$ 1) $+A(t+1)]_{+}$, where \boldsymbol{A} is i.i.d. Bernoulli, and $S(t)=1-A(t)$ for $t \geq 1$. Denote $\alpha=\mathrm{E}[A(t)], \mu=1-\alpha$, and the load is $\rho=\alpha / \mu$. Consider the case of a finite waiting room, of size N,

$$
Q(t+1)=[Q(t)-S(t+1)+A(t+1)]_{0}^{N}
$$

where $[x]_{0}^{N}=\max (\min (x, N), 0), x \in \mathbb{R}$. Then \boldsymbol{Q} is a Markov chain on the finite set $\{0, \ldots, N\}$. Let P denote the transition matrix.
Verify that the chain is reversible: There is a probability measure π satisfying the detailed balance equations,

$$
\pi(x) P(x, y)=\pi(y) P(y, x)
$$

Note that on summing each side of this equation over x, you obtain invariance $\pi P=\pi$.
Hint: When $N=\infty$ and $\rho<1$, we have $\pi(x)=(1-\rho) \rho^{x}$.
8 Rate of convergence in value iteration In the previous model take $\rho=\alpha / \mu=0.95$. Work out the following using Matlab.
(i) Compute the first and second largest eigenvectors of P for a three values of N (say, $N=5,10,50)$.
(ii) For each of these values of N, obtain the solution to Poisson's equation with $c(x)=x$, using the value iteration algorithm. You might experiment with different initial conditions: $V_{0}(x)=0$, or $V_{0}(x)=\frac{1}{2}(\mu-\alpha)^{-1} x^{2}$ (the fluid value function).
(iii) Estimate the rate of convergence λ, where $\Lambda=\log (\lambda)$ is given by,

$$
\Lambda:=\lim _{n \rightarrow \infty} n^{-1} \log \left(\left\|h-h_{n}\right\|\right)
$$

How does λ compare with λ_{2}, the second largest eigenvalue for P ?
9 Inverse dynamic programming Consider the controlled Markov chain, evolving on \mathbb{R}_{+}:

$$
X(t+1)=X(t)-U(t)+A(t+1)
$$

where \boldsymbol{A} is i.i.d. on \mathbb{R}_{+}, with finite variance. The input is constrained: Given $X(t)=x$, we have $U(t) \in \mathrm{U}(x)$, where $\mathrm{U}(x)=\{x: 0 \leq u \leq x\}$. Let $h(x)=x^{2}$, and find a function $c(x)$ and constant η^{*} so that the ACOE holds,

$$
\min _{u \in \mathbf{U}(x)}\left\{c(x)+u^{2}+D_{u} h(x)\right\}=\eta^{*}, \quad x \geq 0
$$

A bit of theory regarding Prob. 8 (iii): If π is invariant for this irreducible P, then you can obtain, for any n,

$$
P^{n}=(P-1 \otimes \pi)^{n}+1 \otimes \pi
$$

But then, for any x, y, z,

$$
P^{n}(x, z)-P^{n}(y, z)=(P-1 \otimes \pi)^{n}(x, z)-(P-1 \otimes \pi)^{n}(y, z)
$$

The right hand side goes to zero like λ_{2}^{n} :

$$
\log \left(\lambda_{2}\right)=\lim _{n \rightarrow \infty} n^{-1} \log \left(\left\|(P-1 \otimes \pi)^{n}\right\|\right),
$$

where $\|\cdot\|$ is any matrix norm.
Extra credit http://en.wikipedia.org/wiki/Markov_chain "This article's introduction section may not adequately summarize its contents... "
Write a proper paragraph that a junior undergrad in psychology or civil engineering can understand, and I extend the deadline to next Tuesday. You can work in groups of two or three. Please have a look at the rest of this site and see if you can spot any howlers at this site ${ }^{1}$.

It will be great fun to change Wikipedia's definition by next Thursday!!
... We will hit "Markov Decision Process@wiki" next.

[^0]
[^0]: ${ }^{1}$ Google's define:howler gives, belly laugh: a joke that seems extremely funny ... or ... a glaring blunder wordnetweb.princeton.edu/perl/webwn

