
ECE 555 Assignment # 3

Issued: February 11 Due: February 17, 2011

Solutions

Reading: Begin Chapter 9 of CTCN.

Exercises:

7. Reversibility The M/M/1 queue in discrete time is defined by Q(t + 1) = [Q(t) − S(t +
1) + A(t + 1)]+, where A is i.i.d. Bernoulli, and S(t) = 1−A(t) for t ≥ 1. Denote α = E[A(t)],
µ = 1 − α, and the load is ρ = α/µ. Consider the case of a finite waiting room, of size N ,

Q(t + 1) = [Q(t) − S(t + 1) + A(t + 1)]N0

where [x]N0 = max(min(x,N), 0), x ∈ R. Then Q is a Markov chain on the finite set {0, . . . , N}.
Let P denote the transition matrix.
Verify that the chain is reversible: There is a probability measure π satisfying the detailed

balance equations,

π(x)P (x, y) = π(y)P (y, x)

Note that on summing each side of this equation over x, you obtain invariance πP = π.
Hint: When N = ∞ and ρ < 1, we have π(x) = (1 − ρ)ρx.

Solution : Let’s see if µ(x) = ρx satisfies the detailed balance equations: For 1 ≤ x ≤ N − 1
we have,

µ(x)P (x, y) = ρx(α1{y = x + 1} + µ1{y = x − 1} ,

µ(y)P (y, x) = ρy(α1{x = y + 1} + µ1{x = y − 1}) .

We can transform the second identity into the first to obtain the detailed balance equations for
this range of x:

µ(y)P (y, x) = ρx−1α1{x = y + 1} + ρx+1µ1{x = y − 1}

= ρxα/ρ1{x = y + 1} + ρxµρ1{x = y − 1}

= ρx(µ1{x = y + 1} + α1{x = y − 1})

= µ(x)P (x, y)

For x = 0 we have,

µ(x)P (x, y) = α1{y = x + 1} + µ1{y = x} ,

µ(y)P (y, x) = ρy(µ1{y = 1} + µ1{y = 0}) .

Consequently, for x = 0,

µ(y)P (y, x) = ρy(µ1{y = 1} + µ1{y = 0})

= α1{y = 1} + µ1{y = 0}

= α1{y = x + 1} + µ1{y = x}

= µ(x)P (x, y)

For x = N we have,

µ(x)P (x, y) = ρx(α1{y = x} + µ1{y = x − 1}) ,

µ(y)P (y, x) = ρy(α1{y = N} + α1{y = N − 1}) .

Consequently, in this case

µ(y)P (y, x) = ρy(α1{y = N} + α1{y = N − 1})

= ρNα1{y = N} + ρN−1α1{y = N − 1}

= ρNα1{y = N} + ρNµ1{y = N − 1}

= µ(x)P (x, y)

Note that µ(X):= = µ({1, 2, . . . , N}) =
∑N

x=0 ρx = 1−ρN+1

1−ρ
< ∞. Thus

π(x) = µ(x)/µ(X) =
1 − ρ

1 − ρN+1
ρx

is a probability measure satisfying the detailed balanced equation. ⊓⊔

8. Rate of convergence in value iteration In the previous model take ρ = α/µ = 0.95. Work
out the following using Matlab.

(i) Compute the first and second largest eigenvectors of P for a three values of N (say, N =
5, 10, 50).

(ii) For each of these values of N , obtain the solution to Poisson’s equation with c(x) = x,
using the value iteration algorithm. You might experiment with different initial conditions:
V0(x) = 0, or V0(x) = 1

2 (µ − α)−1x2 (the fluid value function).

(iii) Estimate the rate of convergence λ, where Λ = log(λ) is given by,

Λ := lim
n→∞

n−1 log(‖h − hn‖)

How does λ compare with λ2, the second largest eigenvalue for P?

Solution : For part (i), we use the command eig(P) where P is the transition matrix.
The command sort(eig(P), ′descend′) will sort the eigenvalues in the descending order. The
following is a list of the eigenvalues of P for N = 5, 10, 50, and Figure 2 is a plot of λ2(P) for
2 ≤ N ≤ 50. Figure 2 also shows all eigenvalues of P when N = 50.
For part (ii) we apply the VIA described in lecture and in the notes.
Figure 3 plots our estimate of h after 100 iterations for N = 10.
For (iii), recall the “bit of theory”:

Pn = (P − 1 ⊗ π)n + 1 ⊗ π

The matrix (P − 1 ⊗ π)n has maximal eigenvalue equal to λn
2 , which is strictly less than one,

and hence the matrix product converges to zero geometrically fast. Therefore, the difference
converges to zero at the same rate:

Pn(x, z) − Pn(y, z) = (P − 1 ⊗ π)n(x, z) − (P − 1 ⊗ π)n(y, z)

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Pole−Zero Map

Real Axis

Im
ag

in
ar

y
A

xi
s

Figure 1: Shown on the left is a plot of λ2(P) vs. N . Plotted on the right are the eigenvalues
of P in the complex plane

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5
x 10

4

x

h

Figure 2: Plot of h for N = 50. A quadratic approximation is accurate “where the process
lives” — x ≤ 30.

The VIA computes,

Vn(x) = PnV0 (x) +

n−1
∑

i=0

P ic (x)

and hn(x) = Vn(x) − Vn(x∗) can thus be expressed,

hn(x) = (P − 1 ⊗ π)nV0 (x) − (P − 1 ⊗ π)nV0 (x∗)

+

n−1
∑

i=0

(

(P − 1 ⊗ π)ic (x) − (P − 1 ⊗ π)ic (x∗)
)

A solution to Poisson’s equation is given by,

h(x) =

∞
∑

i=0

(

(P − 1 ⊗ π)ic (x) − (P − 1 ⊗ π)ic (x∗)
)

Hence, the error can be expressed,

h(x) − hn(x) = −(P − 1 ⊗ π)nV0 (x) + (P − 1 ⊗ π)nV0 (x∗)

+
∞

∑

i=n

(

(P − 1 ⊗ π)ic (x) − (P − 1 ⊗ π)ic (x∗)
)

which converges to zero at rate λn
2 .

0 500 1000 1500 2000
−2

0

2

4

6

8

10

12

lo
g(

\|h
_{

n+
1}

−
h_

n\
|_

2)
/n

n

V
0
(x)=1/2*(µ−α)−1x2

V
0
(x)=0

log(λ
2
)

Figure 3: Blue: log(hn+1 − hn)/n plotted against n and h0(x) ≡ 1
2 (µ − α)−1x2. Green:

log(hn+1 − hn)/n plotted against n and h0(x) ≡ 0.Red: log(λ2).

However, Figure 3 plots log(hn+1 − hn)/n for n ≥ 1. The results are horrible! In theory, this
should converge linearly to −∞. Apparently, with this high load, numerical effects mask the
geometric rate of convergence.

Station 1

µ1

µ3

Q1(t)

Q3(t)
Station 2

µ2

Q2(t)
α1

Figure 4: Simple re-entrant line

Numerics are bad because of the high load... As far as numerics go, it seems Prof. Meyn
should not have set such a high load! Usually, numerics are much better behaved.
Figure 4 shows a network example from CTCN. Figure 5 provides examples of the convergence
of value iteration to compute an optimal policy, with c(x, u) = ‖x‖1 =

∑

xi. The algorithm
was initialized with V0 ≡ 0, or with two different fluid value functions. The vertical axis shows
the performance in terms of average cost for the nth policy. The improvement in convergence
in the initial stages is remarkable.

Standard VIA

V0 = JLBFS

V0 = J∗

η
n

100 200 300

11

11.2

11.4

11.6

11.8

12

12.2

12.4

12.6

0 n

Figure 5: Convergence of the VIA with three different initializations: V0 ≡ 0, or V0 taken as a
value function for the fluid mode for two different policies. The fluid value function was under
the optimal fluid policy in one experiment, and in the other the policy was the LBFS (last
buffer first served) priority policy.

The queue without truncation Final note: You might think that for the full M/M/1
queue, the eigenvector will be of the form h(x) = γx for some γ > 1. For this function we have,

Ph (x) = αh(x + 1) + µh(x − u)

where u = 1{x ≥ 1}. For x ≥ 1 this gives, Ph = λh, where λ = αγ + µγ−1. However, the
eigenvector equation fails for x = 0.
Suppose we choose λ ∈ (−1, 1), with λ2 > 4αµ. Then, there are two solutions γ+, γ− to the
equation,

αγ + µγ−1 = λ

We can then take h(x) = A+γx
+ + A−γx

−
: For arbitrary constants {A+, A−}, the eigenvector

equation holds for x ≥ 1. We choose {A+, A−} so that Ph(0) = λh(0) holds for x = 0. We
have,

Ph (0) = αh(1) + µh(0) = α(A+γ+ + A−γ−) + µ(A+ + A−)

Setting the right hand side equal to λh(0) = λ[A+ + A−] gives a linear relationship between
A+ and A−.
We can attempt to summarize all of this as follows:

(i) For the M/M/1 queue there is no spectral gap: Any λ satisfying λ2 > 4αµ is an eigenvalue.

(ii) For the truncated model, λ2(N) → 1 as N → ∞.

(iii) However, for the M/M/1 queue without truncation, there is NO spectrum in L2 except for
the trivial eigenvector h ≡ 1. You can check that any of the eigenvectors corresponding to
λ2 < 1, we have

∑

(h(n))2π(n) = ∞.

9. Inverse dynamic programming Consider the controlled Markov chain, evolving on R+:

X(t + 1) = X(t) − U(t) + A(t + 1) ,

where A is i.i.d. on R+, with finite variance. The input is constrained: Given X(t) = x, we
have U(t) ∈ U(x), where U(x) = {x : 0 ≤ u ≤ x}. Let h(x) = x2, and find a function c(x) and
constant η∗ so that the ACOE holds,

min
u∈U(x)

{c(x) + u2 + Duh (x)} = η∗, x ≥ 0.

Solution : For any given constant η∗, we define

c(x) = η∗ − min
u∈U(x)

{u2 + Duh (x)}, x ≥ 0. (1)

Without much effort at all we can see that this function is coercive — It’s sublevel sets are
bounded subsets of R+. To see this, let α = E[A(1)], and observe that for x ≥ α + 1, we obtain
a bound on c by setting u ≡ α + 1:

c(x) ≥ η∗ − {1 + D1h (x)} = η∗ − 1 −
(

E[(x − 1 + A(1) − α)2] − x2
)

.

Since A(1) − α has zero mean, this simplifies to

c(x) ≥ η∗ − 1 −
(

[(x − 1)2 + σ2
A] − x2

)

.

where σ2
A denotes the variance of A(1). The bound can be further simplified to,

c(x) ≥ η∗ − 2 − σ2
A + 2x

To compute c we must obtain the minimizer u∗, which requires differentiation: Assuming that
the optimizer is in the interior of U(x) we conclude that,

0 =
d

du

(

u2 −
(

E[(x − u + A(1))2]
)
∣

∣

∣

u=u∗

= 2u∗ − 2E[(x − u∗ + A(1))]

Hence u∗ = 1
2(x + α). This is feasible for x ≥ α. For x < α we conclude that u∗ = x.

Plugging u∗ into (1) then gives

c(x) = η∗ −

{

x2 +
(

x2 − E[A(1)2]
)

, x < α;
1
4(x + α)2 +

(

x2 − E[{x − 1
2(x + α) + A(1)}2]

)

, x ≥ α.

To ensure positivity we can take η∗ = E[A(1)2].

It is not worth expanding out this expression for c, but we can argue that c is approximated
by the quadratic 1

2x2 for large x:

lim
x→∞

c(x)

x2
= lim

x→∞

1
4x2 + (x2 − (1

2x)2)

x2
= 1

2

If our goal was to minimize the average cost with c(x, u) = 1
2x2 + u2, then this would likely

provide a good approximate solution.

