Reading: Continue reading CTCN: We will cover Sections 9.1-9.5.

Exercises:

10. Consider the linear model $X(t+1)=A X(t)+B U(t)+N(t+1)$, with N i.i.d., zero mean, and finite variance. Consider the quadratic cost,

$$
c(x, u)=\frac{1}{2} x^{\prime} Q x+\frac{1}{2} u^{\prime} R u
$$

where $R>0$ and $Q \geq 0$. Apply one step of the VIA algorithm to compute V_{1} by hand when V_{0} is a quadratic. Easy, right?
Explain why computation is it so much harder for the ℓ_{1} control problem, with $c(x, u)=$ $\sqrt{x^{\prime} Q x}+\sqrt{u^{\prime} R u}$.
11. Recall the controlled queueing model,

$$
\begin{equation*}
Q(t+1)=Q(t)-U(t)+A(t+1) \tag{1}
\end{equation*}
$$

in which \boldsymbol{A} is i.i.d., and $U(t), Q(t)$ are non-negative valued. We have considered the cost function $c(x, u)=x+\frac{1}{2} u^{2}$, and found that the relative value function can be approximated by the fluid value function:

$$
\min _{u}\left\{c(x, u)+D_{u} h(x)\right\} \approx \eta
$$

where $h(x)=k x^{p}$, with $p=3 / 2$, and k, η are constants.
See if you can find an approximation for the discounted-cost optimal control problem. If desired, you can take the form given in CTCN: Find a function h such that,

$$
\min _{u}\left\{c(x, u)+D_{u} h(x)\right\} \approx \gamma h(x)
$$

where $\gamma>0$ (corresponding to discount factor $\beta=(1+\gamma)^{-1}$). This simplifies comparison with the fluid model total-cost problem.
12. Returning once more to (1), in the average cost setting, note that the cost function $c(x, u)=x+\frac{1}{2} u^{2}$ is not well motivated - why sum the two costs?
Let's consider instead the constrained optimization problem,

$$
\min \mathrm{E}\left[U(\infty)^{2}\right] \quad \text { s.t. } \mathrm{E}[X(\infty)] \leq \bar{\eta}
$$

where $\bar{\eta}$ is a pre-specified constraint.
Approximate the solution to this problem, with $\bar{\eta}$ half the steady-state cost obtained when $U(t)=1\{X(t) \geq 1\}$ (see Theorem 3.0.1 in CTCN).
To solve this problem you must truncate the state space, and you should assume that $(U(k), Q(k), A(k))$ are restricted to an integer lattice. I'll give you some flexibility in modeling: the marginal of \boldsymbol{A} has mean near 10, and variance between 5 and 25 - for example, you can choose a uniform, or geometric distribution.
You can solve an LP, or you can compute the solution to the average cost optimization problem with $c(x, u)=\lambda x+\frac{1}{2} u^{2}$, for various $\lambda>0$.

