Reading: Continue reading CTCN: We will cover Sections 9.1-9.5.

Exercises:

10. Consider the linear model $X(t+1)=A X(t)+B U(t)+N(t+1)$, with \boldsymbol{N} i.i.d., zero mean, and finite variance. Consider the quadratic cost,

$$
c(x, u)=\frac{1}{2} x^{\prime} Q x+\frac{1}{2} u^{\prime} R u
$$

where $R>0$ and $Q \geq 0$. Apply one step of the VIA algorithm to compute V_{1} by hand when V_{0} is a quadratic. Easy, right?
Explain why computation is it so much harder for the ℓ_{1} control problem, with $c(x, u)=$ $\sqrt{x^{\prime} Q x}+\sqrt{u^{\prime} R u}$.
Solution First we respond to "Easy, right": With quadratic cost, computation of V_{1} is obtained in closed form, and V_{1} is quadtric. The ℓ_{1} problem is "easy" because it is a convex program, but it is hard because we cannot obtain a closed-form expression V_{1}.
Assume $V_{0}=\frac{1}{2} x^{\prime} M x$ where X is a positive definite matrix. We now compute V_{1} :

$$
\begin{align*}
V_{1}(x)= & \min _{u}\left(c(x, u)+P_{u} V_{0}\right) \\
= & \min _{u}\left(c(x, u)+\mathrm{E}\left[\frac{1}{2}(A x+B u+N(1))^{\prime} M(A x+B u+N(1))\right]\right) \\
= & \min _{u}\left(c(x, u)+\mathrm{E}\left[\frac{1}{2} u^{\prime} B^{\prime} M B u+x^{\prime} A^{\prime} M B u+N(1)^{\prime} M(A x+B u)\right]\right. \\
& \left.+\mathrm{E}\left[\frac{1}{2} x^{\prime} A^{\prime} M A x+\frac{1}{2} N(1)^{\prime} A N(1)\right]\right) \\
= & \min _{u}\left(c(x, u)+\frac{1}{2} u^{\prime} B^{\prime} M B u+x^{\prime} A^{\prime} M B u\right. \\
& \left.+\mathrm{E}\left[N(1)^{\prime} M(A x+B u)\right]+\frac{1}{2} x^{\prime} A^{\prime} M A x+\frac{1}{2} \mathrm{E}\left[N(1)^{\prime} A N(1)\right]\right) \\
= & \min _{u}\left(\frac{1}{2} u^{\prime} R u+\frac{1}{2} u^{\prime} B^{\prime} M B u+x^{\prime} A^{\prime} M B u\right) \\
& +\frac{1}{2} x^{\prime} Q x+\frac{1}{2} x^{\prime} A^{\prime} M A x+\frac{1}{2} \mathrm{E}\left[N(1)^{\prime} A N(1)\right] \tag{1}
\end{align*}
$$

To find the minimizer u, we use the necessary condition for optimality:

$$
\begin{aligned}
0 & =\nabla_{u}\left(\frac{1}{2} u^{\prime} R u+\frac{1}{2} u^{\prime} B^{\prime} M B u+x^{\prime} A^{\prime} M B u\right) \\
& =R u+B^{\prime} M B u+B^{\prime} M A x
\end{aligned}
$$

Thus, we have

$$
u=-\left(R+B^{\prime} M B\right)^{-1} B^{\prime} M A x
$$

Substitute this into (1), we obtain

$$
V_{1}=\frac{1}{2} x^{\prime}\left(Q+A^{\prime} M A\right) x-\frac{1}{2} x^{\prime} A^{\prime} M B\left(R+B^{\prime} M B\right)^{-1} B^{\prime} M A x+\frac{1}{2} \mathrm{E}\left[N(1)^{\prime} A N(1)\right]
$$

Applying matrix inversion lemma, we obtain

$$
\left(M^{-1}+B R^{-1} B^{\prime}\right)^{-1}=M-M B\left(R+B^{\prime} M B\right)^{-1} B^{\prime} M
$$

Consequently, we have

$$
V_{1}=\frac{1}{2} x^{\prime}\left(Q+\left(M^{-1}+B R^{-1} B^{\prime}\right)^{-1}\right) x+\frac{1}{2} \mathrm{E}\left[N(1)^{\prime} A N(1)\right]
$$

where $Q+\left(M^{-1}+B R^{-1} B^{\prime}\right)^{-1}$ is clearly a positive definite matrix.
11. Recall the controlled queueing model,

$$
\begin{equation*}
Q(t+1)=Q(t)-U(t)+A(t+1) \tag{2}
\end{equation*}
$$

in which \boldsymbol{A} is i.i.d., and $U(t), Q(t)$ are non-negative valued. We have considered the cost function $c(x, u)=x+\frac{1}{2} u^{2}$, and found that the relative value function can be approximated by the fluid value function:

$$
\min _{u}\left\{c(x, u)+D_{u} h(x)\right\} \approx \eta
$$

where $h(x)=k x^{p}$, with $p=3 / 2$, and k, η are constants.
See if you can find an approximation for the discounted-cost optimal control problem. If desired, you can take the form given in CTCN: Find a function h such that,

$$
\min _{u}\left\{c(x, u)+D_{u} h(x)\right\} \approx \gamma h(x)
$$

where $\gamma>0$ (corresponding to discount factor $\beta=(1+\gamma)^{-1}$). This simplifies comparison with the fluid model total-cost problem.

Solution Consider the discounted cost optimality equation (DCOE) for the fluid model,

$$
\begin{equation*}
\min _{u}\left\{c(x, u)+D_{u} J(x)\right\}=\gamma J(x) \tag{3}
\end{equation*}
$$

in which $D_{u} J(x)=(-u+\alpha) \cdot \nabla J(x)$. The DCOE is solved with the fluid value function,

$$
J^{*}(x)=\inf _{u(\cdot)} \int_{0}^{\infty} e^{-\gamma t} c(q(t), u(t)) d t, \quad q(0)=x \geq 0
$$

To simplify the problem we take $\alpha=0$, so the fluid model is defined by $\dot{q}=-u$. In this case, when $\gamma=0$, we can obtain an explicit solution,

$$
\begin{equation*}
J_{0}^{*}(x)=k x^{3 / 2}, \quad \text { where } k=4 \sqrt{2} / 3 \tag{4}
\end{equation*}
$$

For $\gamma>0$ we can apply (3) and the form of c to deduce $u^{*}=-\frac{d}{d x} J^{*}(x)$, and

$$
\begin{equation*}
x-\frac{1}{2}\left(\frac{d}{d x} J^{*}(x)\right)^{2}=\gamma J^{*}(x) \tag{5}
\end{equation*}
$$

We can't solve this, but note that for any non-negative, smooth function $J: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$, on setting $c_{J}(x, u)=\gamma J(x)+\frac{1}{2}\left(\frac{d}{d x} J(x)\right)^{2}+\frac{1}{2} u^{2}$, we solve the DCOE using this function,

$$
\begin{equation*}
\min _{u}\left\{c_{J}(x, u)+D_{u} J(x)\right\}=\gamma J(x)+\frac{1}{2}\left(\frac{d}{d x} J(x)\right)^{2}-\frac{1}{2}\left(\frac{d}{d x} J(x)\right)^{2}=\gamma J(x) \tag{6}
\end{equation*}
$$

Our goal is to find J so that $c_{J} \approx c$.
We first establish some structure of the solution to (5):
(i) Convexity of c and linearity of the fluid model implies that J^{*} is convex.
(ii) If $x \sim 0$ or $\gamma \sim 0$ then the exponential $e^{-\gamma t}$ has little impact. Hence $J^{*}(x)=O\left(x^{3 / 2}\right)$ for $x \sim 0$ (the structure of J^{*} when $\gamma=0$).
(iii) An upper bound on J^{*} is obtained on setting $u(t)=u_{0} 1\{q(t)>0\}$. The resulting value function has linear growth, which implies that $J^{*}(x)=O(x)$ for large x. This combined with convexity implies that the following limit exists, and is finite:

$$
\frac{d}{d x} J^{*}(\infty):=\lim _{x \rightarrow \infty} \frac{d}{d x} J^{*}(x)=\lim _{x \rightarrow \infty} \frac{1}{x} J^{*}(x)<\infty
$$

A second look at the DCOE gives the value, $\frac{d}{d x} J^{*}(\infty)=\gamma^{-1}$.
Putting this all together, the solution to (5) can be approximated by a convex function with linear growth. There are many such approximations.
If we want $J(x)=O\left(x^{3 / 2}\right)$ for $x \sim 0$, then we could try

$$
J(x)=\frac{x}{\gamma}\left(1-e^{-k \gamma \sqrt{x}}\right)
$$

This has the right shape for large x, and is approximately $k x^{3 / 2}$ when $x \sim 0$. It is convex, with

$$
\frac{d}{d x} J(x)=\frac{1}{\gamma}\left(\left(1-e^{-k \gamma \sqrt{x}}\right)+\frac{1}{2} k \gamma \sqrt{x} e^{-k \gamma \sqrt{x}}\right)
$$

Consequently, $c_{J}(x) \sim x+u^{2}$ (in engineering terms!) for arbitrary γ.
We have $J(x) \rightarrow k x^{3 / 2} \gamma \downarrow 0$, for each $x \geq 0$. Considering (4), a natural choice for k is $k=4 \sqrt{2} / 3$. In this case it follows that $c_{J}(x) \rightarrow x+u^{2}$ as well.
12. Returning once more to (2), in the average cost setting, note that the cost function $c(x, u)=x+\frac{1}{2} u^{2}$ is not well motivated - why sum the two costs?
Let's consider instead the constrained optimization problem,

$$
\begin{equation*}
\min \mathrm{E}\left[U(\infty)^{2}\right] \quad \text { s.t. } \mathrm{E}[X(\infty)] \leq \bar{\eta} \tag{7}
\end{equation*}
$$

where $\bar{\eta}$ is a pre-specified constraint.
Approximate the solution to this problem, with $\bar{\eta}$ half the steady-state cost obtained when $U(t)=1\{X(t) \geq 1\}$ (see Theorem 3.0.1 in CTCN).
To solve this problem you must truncate the state space, and you should assume that $(U(k), Q(k), A(k))$ are restricted to an integer lattice. I'll give you some flexibility in modeling: the marginal of \boldsymbol{A} has mean near 10 , and variance between 5 and 25 - for example, you can choose a uniform, or geometric distribution.
You can solve an LP, or you can compute the solution to the average cost optimization problem with $c(x, u)=\lambda x+\frac{1}{2} u^{2}$, for various $\lambda>0$.
Solution Regardless of what approach you take, the state space and action space must be truncated: $\mathrm{X}=[0, \ldots N]$ and $\mathrm{U}=[0, \ldots M]$ for some finite N, M. We also have state dependent input constraints:

$$
\mathbf{U}(x)=\{x: u \in \mathbf{U}, u \leq x\}
$$

There are two ways to approach this problem:
Method 1: Lagrangian relaxation For each $\lambda \geq 0$ solve the MDP

$$
\min \mathrm{E}\left[U(\infty)^{2}\right]+\lambda(\mathrm{E}[X(\infty)]-\bar{\eta})
$$

Find the value $\lambda^{*}>0$ such that the resulting policy gives $\mathrm{E}\left[X^{*}(\infty)\right]=\bar{\eta}$, and this will solve the constrained optimization problem (7).

Method 2: LP The constrained optimization problem can be written as the following linear programming problem:

$$
\begin{array}{cr}
\max & \sum_{x, u} \Gamma(x, u) c_{\mathrm{U}}(u) \\
\text { s.t. } & \sum_{x, u} \Gamma(x, u) c_{\mathrm{x}}(x) \leq \bar{\eta} \\
& \sum_{x, u} \Gamma(x, u)=1 \\
& \sum_{x, u} \Gamma(x, u) P_{u}(x, y)=\sum_{u} \Gamma(y, u) \quad \forall y \tag{8}\\
& \Gamma(x, u) \geq 0 \quad \forall x, u
\end{array}
$$

where $c_{\mathrm{U}}(u) \equiv u^{2}, c_{\mathrm{X}}(x) \equiv x$, and where $P_{u}(x, y)$ is the transition law under control u for this Markov model,

$$
Q(t+1)=[Q(t)-U(t)+A(t+1)]_{0}^{N}
$$

Here is the result you would expect for Γ^{*},

where the dark color denotes the support of Γ. In this particular experiment, the solution obtained was deterministic. In other experiments, there will be a few values of x for which $\Gamma(x, u) \in(0,1)$, so that the policy is randomized.
In the case illustrated in the figure, the optimizing Γ^{*} defines a (deterministic) state feedback policy ϕ^{*}. For small x, we have $\phi^{*}(x)=x$ (the queue is emptied out). For larger x, the policy has the \sqrt{x}-shape predicted by the analysis of the fluid model.

