
ECE 555 Assignment # 4

Issued: February 24 Due: March 10, 2011

Reading: Continue reading CTCN: We will cover Sections 9.1–9.5.

Exercises:

10. Consider the linear model X(t+1) = AX(t)+BU(t)+N(t+1), with N i.i.d., zero mean,
and finite variance. Consider the quadratic cost,

c(x, u) = 1
2x

′Qx+ 1
2u

′Ru

where R > 0 and Q ≥ 0. Apply one step of the VIA algorithm to compute V1 by hand when
V0 is a quadratic. Easy, right?
Explain why computation is it so much harder for the ℓ1 control problem, with c(x, u) =√
x′Qx+

√
u′Ru.

Solution First we respond to “ Easy, right”: With quadratic cost, computation of V1 is
obtained in closed form, and V1 is quadtric. The ℓ1 problem is “easy” because it is a convex
program, but it is hard because we cannot obtain a closed-form expression V1.

Assume V0 =
1
2x

′Mx where X is a positive definite matrix. We now compute V1:

V1(x) = min
u

(

c(x, u) + PuV0

)

= min
u

(

c(x, u) + E[12 (Ax+Bu+N(1))′M(Ax+Bu+N(1))]
)

= min
u

(

c(x, u) + E[12u
′B′MBu+ x′A′MBu+N(1)′M(Ax+Bu)]

+E[12x
′A′MAx+ 1

2N(1)′AN(1)]
)

= min
u

(

c(x, u) + 1
2u

′B′MBu+ x′A′MBu

+E[N(1)′M(Ax+Bu)] + 1
2x

′A′MAx+ 1
2E[N(1)′AN(1)]

)

= min
u

(

1
2u

′Ru+ 1
2u

′B′MBu+ x′A′MBu
)

+1
2x

′Qx+ 1
2x

′A′MAx+ 1
2E[N(1)′AN(1)] (1)

To find the minimizer u, we use the necessary condition for optimality:

0 = ∇u

(

1
2u

′Ru+ 1
2u

′B′MBu+ x′A′MBu
)

= Ru+B′MBu+B′MAx

Thus, we have

u = −(R+B′MB)−1B′MAx

Substitute this into (1), we obtain

V1 =
1
2x

′(Q+A′MA)x− 1
2x

′A′MB(R+B′MB)−1B′MAx+ 1
2E[N(1)′AN(1)]

Applying matrix inversion lemma, we obtain

(M−1 +BR−1B′)−1 = M −MB(R+B′MB)−1B′M

Consequently, we have

V1 =
1
2x

′(Q+ (M−1 +BR−1B′)−1
)

x+ 1
2E[N(1)′AN(1)]

where Q+ (M−1 +BR−1B′)−1 is clearly a positive definite matrix.



11. Recall the controlled queueing model,

Q(t+ 1) = Q(t)− U(t) +A(t+ 1) (2)

in which A is i.i.d., and U(t), Q(t) are non-negative valued. We have considered the cost
function c(x, u) = x+ 1

2u
2, and found that the relative value function can be approximated by

the fluid value function:

min
u

{

c(x, u) +Duh (x)
}

≈ η

where h(x) = kxp, with p = 3/2, and k, η are constants.
See if you can find an approximation for the discounted-cost optimal control problem. If
desired, you can take the form given in CTCN: Find a function h such that,

min
u

{

c(x, u) +Duh (x)
}

≈ γh(x)

where γ > 0 (corresponding to discount factor β = (1+γ)−1). This simplifies comparison with
the fluid model total-cost problem.

Solution Consider the discounted cost optimality equation (DCOE) for the fluid model,

min
u

{

c(x, u) +DuJ (x)
}

= γJ(x) (3)

in which DuJ (x) = (−u+ α) · ∇J (x). The DCOE is solved with the fluid value function,

J∗(x) = inf
u( · )

∫ ∞

0
e−γtc(q(t), u(t)) dt, q(0) = x ≥ 0.

To simplify the problem we take α = 0, so the fluid model is defined by q̇ = −u. In this case,
when γ = 0, we can obtain an explicit solution,

J∗
0 (x) = kx3/2 , where k = 4

√
2/3. (4)

For γ > 0 we can apply (3) and the form of c to deduce u∗ = − d
dxJ

∗(x), and

x− 1
2

(

d
dxJ

∗(x)
)2

= γJ∗(x) (5)

We can’t solve this, but note that for any non-negative, smooth function J : R+ → R+, on
setting cJ (x, u) = γJ(x) + 1

2(
d
dxJ(x))

2 + 1
2u

2, we solve the DCOE using this function,

min
u

{

cJ(x, u) +DuJ (x)
}

= γJ(x) + 1
2(

d
dxJ(x))

2 − 1
2

(

d
dxJ(x)

)2
= γJ(x) (6)

Our goal is to find J so that cJ ≈ c.

We first establish some structure of the solution to (5):

(i) Convexity of c and linearity of the fluid model implies that J∗ is convex.

(ii) If x ∼ 0 or γ ∼ 0 then the exponential e−γt has little impact. Hence J∗(x) = O(x3/2) for
x ∼ 0 (the structure of J∗ when γ = 0).



(iii) An upper bound on J∗ is obtained on setting u(t) = u01{q(t) > 0}. The resulting value
function has linear growth, which implies that J∗(x) = O(x) for large x. This combined
with convexity implies that the following limit exists, and is finite:

d
dxJ

∗ (∞) := lim
x→∞

d
dxJ

∗(x) = lim
x→∞

1

x
J∗(x) < ∞

A second look at the DCOE gives the value, d
dxJ

∗ (∞) = γ−1.

Putting this all together, the solution to (5) can be approximated by a convex function with
linear growth. There are many such approximations.

If we want J(x) = O(x3/2) for x ∼ 0, then we could try

J(x) =
x

γ
(1− e−kγ

√
x)

This has the right shape for large x, and is approximately kx3/2 when x ∼ 0. It is convex, with

d
dxJ(x) =

1

γ

(

(1− e−kγ
√
x) + 1

2kγ
√
xe−kγ

√
x
)

Consequently, cJ (x) ∼ x+ u2 (in engineering terms!) for arbitrary γ.
We have J(x) → kx3/2 γ ↓ 0, for each x ≥ 0. Considering (4), a natural choice for k is
k = 4

√
2/3. In this case it follows that cJ (x) → x+ u2 as well.

12. Returning once more to (2), in the average cost setting, note that the cost function
c(x, u) = x+ 1

2u
2 is not well motivated — why sum the two costs?

Let’s consider instead the constrained optimization problem,

min E[U(∞)2] s.t. E[X(∞)] ≤ η̄ (7)

where η̄ is a pre-specified constraint.
Approximate the solution to this problem, with η̄ half the steady-state cost obtained when
U(t) = 1{X(t) ≥ 1} (see Theorem 3.0.1 in CTCN).
To solve this problem you must truncate the state space, and you should assume that (U(k), Q(k), A(k))
are restricted to an integer lattice. I’ll give you some flexibility in modeling: the marginal of A
has mean near 10, and variance between 5 and 25 — for example, you can choose a uniform,
or geometric distribution.
You can solve an LP, or you can compute the solution to the average cost optimization problem
with c(x, u) = λx+ 1

2u
2, for various λ > 0.

Solution Regardless of what approach you take, the state space and action space must
be truncated: X = [0, . . . N ] and U = [0, . . .M ] for some finite N,M . We also have state
dependent input constraints:

U(x) = {x : u ∈ U, u ≤ x}

There are two ways to approach this problem:

Method 1: Lagrangian relaxation For each λ ≥ 0 solve the MDP

min E[U(∞)2] + λ
(

E[X(∞)] − η̄
)

Find the value λ∗ > 0 such that the resulting policy gives E[X∗(∞)] = η̄, and this will solve
the constrained optimization problem (7).



Method 2: LP The constrained optimization problem can be written as the following linear
programming problem:

max
∑

x,u Γ(x, u)cU(u)

s.t.
∑

x,u Γ(x, u)cX(x) ≤ η̄
∑

x,u Γ(x, u) = 1
∑

x,u Γ(x, u)Pu(x, y) =
∑

u Γ(y, u) ∀y
Γ(x, u) ≥ 0 ∀x, u

(8)

where cU(u) ≡ u2, cX(x) ≡ x, and where Pu(x, y) is the transition law under control u for this
Markov model,

Q(t+ 1) = [Q(t)− U(t) +A(t+ 1)]N0

Here is the result you would expect for Γ∗,
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where the dark color denotes the support of Γ. In this particular experiment, the solution
obtained was deterministic. In other experiments, there will be a few values of x for which
Γ(x, u) ∈ (0, 1), so that the policy is randomized.
In the case illustrated in the figure, the optimizing Γ∗ defines a (deterministic) state feedback
policy φ∗. For small x, we have φ∗(x) = x (the queue is emptied out). For larger x, the policy
has the

√
x-shape predicted by the analysis of the fluid model.


