ECE 555
Issued: April 12

Assignment \# 5 (version 2)
Due: April 24 May 5, 2011

Reading: See resources page - handouts and bibliography on ODE methods and SA.

Exercises:

13. Compute the conditional distribution of X_{1} and X_{2} for the Gaussian two-armed bandit problem introduced in class. Recall that the observations are given by,

$$
Y(t)=U(t) X_{1}+(1-U(t)) X_{2}+N(t)
$$

where $\left\{X_{i}\right\}$ are independent Gaussian, $N\left(0, \sigma_{i}^{2}\right), \boldsymbol{N}$ is i.i.d., $N\left(0, \sigma_{N}^{2}\right)$, and $U(t) \in\{0,1\}$ is adapted to \boldsymbol{Y}.
14. Avoidance of traps.

In this exercise you will try out the SA algorithm to minimize a function $f(x)$ over $x \in \mathbb{R}$. You will consider $f(x)=x^{2}\left(1+(x+10)^{2}\right)$. We have access only to noisy measurements of its normalized gradient: If at time t the value x is selected, then $Y(t)$ is observed,

$$
Y(t)=\frac{1}{1+(x+5)^{2}} \nabla f(x)+N(t)
$$

where \boldsymbol{N} is i.i.d., with zero mean, and unit variance.
(i) Apply the stochastic approximation algorithm repeatedly, from various initial conditions, to obtain estimates $\{X(t)\}$ of $x^{*}=0$. Obtain an estimate of the probability that $X(\infty)=0$ when $X(0)=20$. Repeat, with $X(0)=-20$.
(ii) Compare the sample path behavior of the standard SA algorithm, with the algorithm obtained using Polyak's averaging technique (again for $X(0)=20$, and $X(0)=-20)$.
(iii) Propose a modification the SA algorithm to ensure that your estimates converge to $x^{*}=0$ with probability one, from each initial condition. Lai \& Robbins' exploration should provide some inspiration.
15. Variance analysis of stochastic approximation. Consider the standard SA recursion in d dimensions,

$$
X(t+1)=X(t)+\frac{G}{t+1}(f(X(t))+N(t+1)), \quad X(0) \in \mathbb{R}^{d}
$$

where \boldsymbol{N} is i.i.d., with zero mean, and finite variance. The $d \times d$ matrix G is to be optimized as part of this exercise.

Suppose that the recursion \boldsymbol{X} is globally convergent to the origin. To analyze the variance of the algorithm, we might consider a linearization,

$$
\mathcal{E}(t+1)=\mathcal{E}(t)+\frac{G}{t+1}(A \mathcal{E}(t)+N(t+1)), \quad \mathcal{E}(0)=0
$$

where $A=\nabla f(0)$.
(i) Obtain a recursive formula for $\Sigma_{G}(t)=\mathrm{E}\left[\mathcal{E}(t) \mathcal{E}(t)^{\mathrm{T}}\right]$.
(ii) Find conditions on A and G such that the asymptotic variance exists,

$$
\Sigma_{G}^{\infty}=\lim _{t \rightarrow \infty} t \Sigma_{G}(t)
$$

(iii) Obtain the matrix G that minimizes trace Σ_{G}^{∞}.

