Due: April 21 May 5, 2011

Reading: See resources page - handouts and bibliography on ODE methods and SA.

Exercises:

13. Compute the conditional distribution of X_1 and X_2 for the Gaussian two-armed bandit problem introduced in class. Recall that the observations are given by,

 $Y(t) = U(t)X_1 + (1 - U(t))X_2 + N(t)$

where $\{X_i\}$ are independent Gaussian, $N(0, \sigma_i^2)$, N is i.i.d., $N(0, \sigma_N^2)$, and $U(t) \in \{0, 1\}$ is adapted to Y.

14. Avoidance of traps.

In this exercise you will try out the SA algorithm to minimize a function f(x) over $x \in \mathbb{R}$. You will consider $f(x) = x^2(1 + (x + 10)^2)$. We have access only to noisy measurements of its normalized gradient: If at time t the value x is selected, then Y(t) is observed,

$$Y(t) = \frac{1}{1 + (x+5)^2} \nabla f(x) + N(t)$$

where N is i.i.d., with zero mean, and unit variance.

- (i) Apply the stochastic approximation algorithm repeatedly, from various initial conditions, to obtain estimates $\{X(t)\}$ of $x^* = 0$. Obtain an estimate of the probability that $X(\infty) = 0$ when X(0) = 20. Repeat, with X(0) = -20.
- (ii) Compare the sample path behavior of the standard SA algorithm, with the algorithm obtained using Polyak's averaging technique (again for X(0) = 20, and X(0) = -20).
- (iii) Propose a modification the SA algorithm to ensure that your estimates converge to $x^* = 0$ with probability one, from each initial condition. Lai & Robbins' exploration should provide some inspiration.
- 15. Variance analysis of stochastic approximation. Consider the standard SA recursion in d dimensions,

$$X(t+1) = X(t) + \frac{G}{t+1} \left(f(X(t)) + N(t+1) \right), \qquad X(0) \in \mathbb{R}^d,$$

where N is i.i.d., with zero mean, and finite variance. The $d \times d$ matrix G is to be optimized as part of this exercise.

Suppose that the recursion X is globally convergent to the origin. To analyze the variance of the algorithm, we might consider a linearization,

$$\mathcal{E}(t+1) = \mathcal{E}(t) + \frac{G}{t+1} \left(A \mathcal{E}(t) + N(t+1) \right), \qquad \mathcal{E}(0) = 0.$$

where $A = \nabla f(0)$.

- (i) Obtain a recursive formula for $\Sigma_G(t) = \mathsf{E}[\mathcal{E}(t)\mathcal{E}(t)^{\mathrm{T}}].$
- (ii) Find conditions on A and G such that the asymptotic variance exists,

$$\Sigma_G^{\infty} = \lim_{t \to \infty} t \Sigma_G(t)$$

(iii) Obtain the matrix G that minimizes trace $\Sigma_G^\infty.$