
ECE 555 Control of Stochastic Systems Fall 2005

Handout: Control Variates in Simulation

In the past few lectures we have considered the general stochastic approximation recursion,

θ(k + 1) = θ(k) + ak[g(θ(k)) + ∆(k + 1)], k ≥ 0.

Under general conditions, verified by considering various ODEs, it is known that {θ(k)} converges to
the set of zeros of g.

The remaining problem is that convergence can be very slow. These notes summarize the control
variate method for speeding convergence in simulation. It is highly likely that this technique can be
generalized to other recursive algorithms.
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Figure 1: Simulation using the standard estimator, and the two controlled estimators. The plot at left shows results
with σ2

D = 25, and at right the variance is increased to σ2
D = 125. In each case the estimates obtained from the standard

Monte-Carlo estimator are significantly larger than those obtained using the controlled estimator, and the bound η−

n < η+
n

holds for all large n.

Simulating a Markov Chain Suppose that X is a Markov chain on a state space X with invariant
distribution π. For background see [8] (as well as [10, 3, 8, 4].)

For a given function F : X → R we denote,

Ln(F ) :=
1

n

n−1∑

k=0

F (X(k)) n ≥ 1 .

One can hope to establish the following limit theorems,

The Strong Law of Large Numbers, or SLLN : For each initial condition,

Ln(F ) → π(F ), a.s., n → ∞. (1)

The Central Limit Theorem, or CLT : For some σ ≥ 0 and each initial condition,

√
n[Ln(F ) − η]

w−→ σW, n → ∞, (2)

where W is a standard normal random variable, and the convergence is in distribution.



It is assumed here that the chain is ergodic, which means that the SLLN holds for any bounded
function F : X → R.

Suppose that F : X → R is a π-integrable function. Under ergodicity the SLLN can be generalized
to any such function. Our interest is to efficiently estimate the finite mean η = π(F ). The standard
estimator is the sample path average,

ηn = Ln(F ) n ≥ 1 . (3)

Its performance is typically gauged by the associated asymptotic variance σ2 used in (2). Below are
two well known representations in terms of the centered function F̃ := F − η.

Limiting variance:

σ2 = lim
n→∞

nVar x(Ln(F )) := lim
n→∞

Ex

[
Ln(F̃ )2

]
(4)

Sum of the correlation function:

σ2 =
∞∑

k=−∞Eπ

[
F̃ (X(k))F̃ (X(0))

]
(5)

The following operator-theoretic representation holds more generally. Let Z denote a version of
the fundamental kernel, defined so that F̂ = ZF solves Poisson’s equation for some class of functions
F ,

PF̂ = F̂ − F + η. (6)

It will be convenient to apply the following bilinear and quadratic forms, defined for measurable
functions F,G : X → R,

〈〈F,G〉〉 := P (FG) − (PF )(PG), Q(F ) := 〈〈F,F 〉〉.

Using this notation we have the following representation for the asymptotic variance,

σ2(F ) = π(Q(F̂ )). (7)

Recall that the resolvent is expressed R :=
∑

∞

0
2
−n−1Pn. The function s : X → (0, 1] and the

probability measure ν are called small if the minorization condition holds,

R(x,A) ≥ s(x)ν(A), x ∈ X, A ∈ B(X).

The following is the general state space version of Condition (V3):

For functions V : X → (0,∞], f : X → [1,∞),
a small function s, a small measure ν, and a
constant b < ∞, DV ≤ −f + bs (V3)

The following result is taken from [8, 6]:

Proposition. Suppose that X satisfies (V3) with π(V 2) < ∞. Then, the SLLN and CLT hold for any

F ∈ L
f
∞, and the asymptotic variance σ2(F ) exists, and can be expressed as (4), (5), or (7) above. ⊓⊔



Control-variates The purpose of the control-variate method is to reduce the variance of the stan-
dard estimator (3). See [7, 9, 2, 1] for background on the general control-variate method.

Suppose that H : X → R is a π-integrable function with known mean, and finite asymptotic
variance. By normalization we can assume that π(H) = 0. Then, for a given ϑ ∈ R and with
Fϑ := F − ϑH, the sequence {Ln(Fϑ)} provides an asymptotically unbiased estimator of π(F ). The
asymptotic variance of the controlled estimator is given by

σ2(Fϑ) = Q(F̂ϑ) = π
(
〈〈ZF,ZF 〉〉 − 2ϑ〈〈ZF,ZH〉〉 + ϑ2〈〈ZH,ZH〉〉

)
.

Minimizing over ϑ ∈ R gives the estimator with minimal asymptotic variance,

ϑ∗ =
π(〈〈ZF,ZH〉〉)
π(〈〈ZH,ZH〉〉) .

For a Markov chain it is easy to construct a function with zero mean: consider H = J −PJ where
J is known to have finite mean. Our goal then is to choose J so that it approximates the solution to
Poisson’s equation (6): The idea is that if J = F̂ , then the resulting controlled estimator with ϑ = 1
has zero asymptotic variance. This approach has been successfully applied in queueing models by
taking J equal to the associated fluid value function described in lecture.

Consider the simple reflected random walk on R+, defined by the recursion

X(k + 1) = [X(k) + D(k + 1)]+, k ≥ 0, (8)

with [x]+ = max(x, 0) for x ∈ R, and D i.i.d.. The fluid model is given by,

q(t) = [q(0) − δ]+, t ≥ 0,

where −δ = E[D(k)] is assumed to be negative. The fluid value function is the quadratic,

J(x) =

∫
∞

0

q(t) dt = 1

2
δ
−1x2, x = q(0) ∈ R+.

Consider the special case in which D has common marginal distribution,

D(k) =

{
1 with probability α;

−1 with probability 1 − α.

The Markov chain X is then a discrete-time model of the M/M/1 queue with state space X = Z+.
When F (x) ≡ x we have seen that F̂ (x) = 1

2
δ
−1(x2 + x), so that the error F̂ − J is linear in x.

Moreover, the representation (7) can be written,

σ2(F ) = π(Q(F̂ )) = 2π(F̃ F̂ ) − π(F̃ 2) = E[1
2
δ
−1X̃3 − X̃2]

which grows like δ
−4 as δ ↓ 0 (equivalently, ρ ↑ 1.)

Returning to the random walk (8), consider the following special case in which the sequence D

is of the form D(k) = A(k) − S(k), where A and S are mutually independent, i.i.d. sequences, with
mean α, µ respectively. We let κ > 0 denote a variability parameter, and define

P{S(k) = (1 + κ)µ} = 1 − P{S(k) = 0} = (1 + κ)
−1

P{A(k) = (1 + κ)α} = 1 − P{A(k) = 0} = (1 + κ)
−1

Consequently, we have −δ = E[A(k)] − E[S(k)] = −(µ − α), and σ2
D = σ2

A + σ2
S = (µ2 + α2)κ.



The simulation results shown use µ = 4 and α = 3, so that δ = 1. Two estimators {η−n , η+
n }

were constructed based on the parameter values ϑ−= 1.05 and ϑ+ = 1. The plot at left in Figure 1
illustrates the resulting performance with κ = 2 (σ2

D = 25), and the plot at right shows the controlled
and uncontrolled estimators with κ = 5, and hence σ2

D = 125.
Note that the bounds η
−
n < η+

n < ηn hold for all large n, even though all three estimators are
asymptotically unbiased.

A network model The Kumar-Seidman-Rybko-Stolyar (KSRS) network shown in Figure 2 is de-
scribed in Chapter 1 of the course notes.

Station  1

µ1

µ4

Q1(t)

Q4(t) Station  2

µ2

µ3

Q2(t)

Q3(t)

α1

α3

Figure 2: The Kumar-Seidman-Rybko-Stolyar (KSRS) network.

Consider the following policy based on a vector w̄ ∈ R
2
+ of safety-stock values: Serve Q1 ≥ 1 at

Station I if and only if Q4 = 0, or

µ
−1
2

Q2 + µ
−1
3

Q3 ≤ w̄2. (9)

An analogous condition holds at Station II.
A simulation experiment was conducted to estimate the steady-state mean customer population.

So, with X = Z
4
+, we let F : X → R+ denote the ℓ1 norm on R

4. A CRW network model was
constructed in which the elements of (A,S) were taken Bernoulli (see course lecture notes.) Details
can be found in [5].
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Figure 3: Estimates of the steady-state customer population in the KSRS model as a function of 100 different safety-stock
levels using the policy (9). Two simulation experiments are shown, where in each case the simulation runlength consisted
of N = 200, 000 steps. The left hand side shows the results obtained using the smoothed estimator; the right hand side
shows results with the standard estimator.

Shown in Figure 3 are estimates of the steady-state customer population in Case I for the family
of policies (9), indexed by the safety-stock level w̄ ∈ R

2
+. Shown at left are estimates obtained using

the “smoothed estimator” based on a fluid value function. The plot at right shows estimates obtained
using the standard estimator.
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