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Handout: Convergence of Extended Least Squares

We again consider the noisy linear system

y(k + 1) = ϕ◦(k)T θ◦ + w(k + 1), (1)

where now ϕ◦(k) contains noise variables, as well as input-output variables.
The Extended Least Squares algorithm (ELS, or AML) is analyzed in Lai & Wei “Extended least squares

and their application to adaptive control and prediction in linear systems,” IEEE T.A.C. vol AC-31, no.
10, October 1986, pp. 898–906. We give here a development of the main ideas.

The ELS algorithm The aposteriori error ŵ, and the apriori error e are defined, respectively, by

ŵn = yn − ϕT
n−1θ̂n

en = yn − ϕT
n−1θ̂n−1,

where the pseudo-regression vector ϕ is given by

ϕn−1 = (yn−1, . . . , yn−p, un−1, . . . , un−p, ŵn−1, . . . , ŵn−p)
T .

The ELS algorithm is then given by

θ̂n = θ̂n−1 + Pn−1ϕn−1en (2)

Pn = Pn−1 −
Pn−1ϕnϕT

nPn−1

1 + ϕT
nPn−1ϕn

(3)

Just as in the RLS estimator, the recursion for θ̂ can be rewritten using the recursion for P . First
expand Pnϕn as follows:

Pnϕn = Pn−1ϕn −
(ϕT

nPn−1ϕn)Pn−1ϕn

1 + ϕT
nPn−1ϕn

=
Pn−1ϕn

1 + ϕT
nPn−1ϕn

Applying this to the estimate update equation gives,

θ̂n = θ̂n−1 +
Pn−2ϕn−1en

1 + ϕT
n−1Pn−2ϕn−1

(4)

The apriori and aposteriori prediction errors are closely related: Using the recursion for θ̂, we have

ϕT
n−1θ̂n = ϕT

n−1θ̂n−1 +
ϕT

n−1Pn−2ϕn−1en

1 + ϕT
n−1Pn−2ϕn−1

It follows from subtraction that

ŵn = yn − ϕT
n−1θ̂n = yn − ϕT

n−1θ̂n−1 −

(
ϕT

n−1Pn−2ϕn−1en

1 + ϕT
n−1Pn−2ϕn−1

)

which shows that

ŵn =
en

1 + ϕT
n−1Pn−2ϕn−1

. (5)

This also gives the recursion θ̂n = θ̂n−1 + Pn−2ϕn−1ŵn.



A key identity The following result is what allows us to mimic the analysis of the RLS algorithm

{C(z)(ŵ(z)− w(z))}n = ϕT
n−1θ̃n (6)

where θ̃n is defined here as θ◦ − θ̂n, and θ◦ = (−a1, . . . , b1, . . . , c1, . . .).
The derivation of (6) is a simple consequence of the definitions:

C(z)(ŵ(z)− w(z))n = (C − 1)ŵn − Cwn + ŵn

= (c1, . . . , cp)




ŵn−1
...

ŵn−p


− Cwn + ŵn

= −(a1, . . . , ap)




yn−1
...

yn−p


+ (b1, . . . , bp)




un−1
...

un−p


+ (c1, . . . , cp)




ŵn−1
...

ŵn−p




−yn + ŵn

= ϕT
n−1θ◦ − yn + (yn − φT

n−1θ̂n)

= ϕT
n−1θ̃n

Lyapunov Recursion We can now examine the “Lyapunov function” Q which was used in Handout # 2
in the analysis of RLS. The following recursion will be derived below.

Qk+1 := θ̃T
k+1P

−1
k θ̃k+1

= Qk − 2(ϕT
k θ̃k+1)

[(
1

C(z)
−

1

2

)
ϕT

k θ̃k+1

]

−ϕT
k Pk−1φkŵ

2
k+1 + 2w2

k+1

ϕT
k Pk−1ϕk

1 + ϕT
k Pk−1φk

2wk+1

(
ϕT

k θ̃k +
ϕT

k Pk−1φk

1 + ϕT
k
Pk−1ϕk

(ek+1 − wk+1)

)
.

To exploit this recursion, we apply the following lemma from linear systems theory: Suppose that the filter
1

C(z) −
1
2 is strictly positive real. Then there exists δ > ∞ and K ∈ R such that

n∑

k=0

2
(
ϕT

k θ̃k+1

)[( 1

C(z)
−

1

2

)
ϕT

k θ̃k+1

]
≥ δ

n∑

k=0

(ϕT
k θ̃k+1)

2 + K, n ≥ 1.

The SPR property gives the bound

Qn+1 + δ

n∑

k=0

| ϕT
k θ̃k+1 |

2 +K

+

n∑

k=0

ϕT
k Pk−1ϕkŵ

2
k+1



+ 2

n∑

k=0

wk+1

(
ϕT

k θ̃k +
ϕT

k Pk−1ϕk

1 + ϕT
k Pk−1ϕk

(ek+1 − wk+1)

)

≤ Q0 + 2

n∑

k=0

ϕT
k Pk−1ϕk

1 + ϕT
k
Pk−1ϕk

w2
k+1.

Consider the “cross term” in this bound, which depends linearly on wk+1. From property (P1) of white
noise, from Handout # 2,

2
n∑

k=0

wk+1

(
ϕT

k θ̃k +
ϕT

k Pk−1ϕk

1 + ϕT
k Pk−1ϕk

(ek+1 − wk+1)

)

= o

n∑

k=0

(
ϕT

k θ̃k +
ϕT

k Pk−1ϕk

1 + ϕT
k Pk−1ϕk

(ek+1 − wk+1)

)2

Using this probabilistic bound, we can then proceed using simple algebraic manipulations. Observe that
from (5) we have

ϕT
k θ̃k +

ϕT
k Pk−1ϕk

1 + ϕT
k
Pk−1ϕk

ek+1 = ϕT
k θ̃k+1.

This and (P1) thus gives

2

n∑

k=0

wk+1

(
ϕT

k θ̃k +
ϕT

k Pk−1ϕk

1 + ϕT
k
Pk−1ϕk

(ek+1 −wk+1)
)

= o

(
n∑

k=0

(
ϕT

k θ̃k+1 +
ϕT

k Pk−1ϕk

1 + ϕT
k Pk−1ϕk

wk+1

)2
)

= o

(
n∑

k=0

(
(ϕT

k θ̃k+1)
2 +

(
ϕT

k Pk−1ϕk

1 + ϕT
k Pk−1ϕk

)2

w2
k+1

))

= o

(
n∑

k=0

(ϕT
k θ̃k+1)

2 +
ϕT

k Pk−1ϕk

1 + ϕT
k
Pk−1ϕk

w2
k+1

)

In words, the cross term is insignificant when compared with other quantities in the Lyapunov recursion.
The bound on Q can therefore be written as

Qn+1 +
n∑

k=0

(ϕT
k θ̃k+1)

2 +
n∑

k=0

ϕT
k Pk−1ϕkŵ

2
k+1

= O

(
n∑

k=0

ϕT
k Pk−1ϕk

1 + ϕT
k Pk−1ϕk

w2
k+1

)

= O

(
n∑

k=0

ϕT
k Pk−1ϕk

1 + ϕT
k
Pk−1ϕk

)
= O(log λmaxP

−1
n )

where the last bound is identical to that used in the analysis of RLS.



Conclusions: Just as with RLS, suppose that the disturbance w is a white noise sequence, and that for
each n, the noise variable wn is statistically independent of {φi, yi, vi, i ≤ n− 1}. Assume moreover that

1
C(z) −

1
2 is strictly positive real. Then, the ELS algorithm has the following properties:

1. Since P is positive definite, we have the bound

(λminP
−1
n )|θ̃n+1|

2 ≤ Qn+1 ≤ O(log λmaxP
−1
n )

Rearranging, this gives

|θ̃n+1|
2 = O

(
log λmaxP

−1
n

λminP
−1
n

)

2. We have from the bound on Q,

n∑

k=0

(ϕT
k θ̃k+1)

2 = O(log λmaxP
−1
n )

But, since ŵn − wn = 1
C

ϕT
n−1θ̃n, and the polynomial C is stable, we must also have

n+1∑

k=0

(ŵk − wk)
2 = O(log λmaxP

−1
n )

3. Finally, using the identity

ϕT
k θ̃k = ϕT

k θ̃k+1 − ϕT
k Pk−1ϕkŵk+1

we get the elementary bound

|ϕT
k θ̃k|

2

1 + ϕT
k Pk−1ϕk

≤ 2
(ϕT

k θ̃k+1)
2

1 + ϕT
k Pk−1ϕk

+ 2
(ϕT

k Pk−1ϕk)
2ŵ2

k+1

1 + ϕT
k Pk−1ϕk

≤ 2(ϕT
k θ̃k+1)

2 + 2ϕT
k Pk−1ϕkŵ

2
k+1.

The bound on Q then gives

n∑

k=0

|ϕT
k θ̃k|

2

1 + ϕT
k Pk−1ϕk

= O(log λmaxP
−1
n ).

Typically, we will find that 1
n+1 log λmaxP

−1
n → 0. This is a very mild stability result. So, the bounds

above show that ŵk is a good approximation of wk, and that output predictions will be accurate, even
without persistence of excitation.



Proof of Lyapunov recursion:

Qk+1 = θ̃T
k+1(P

−1
k−1 + ϕkϕ

T
k )θ̃k+1

= θ̃T
k+1P

−1
k−1θ̃k+1 + (ϕT

k θ̃k+1)
2

Also, θ̃k+1 = Pk−1[P
−1
k−1θ̃k − ϕkŵk+1]. So,

Qk+1 = (P−1
k−1θ̃k − ϕkŵk+1)

T Pk−1P
−1
k−1Pk−1(P

−1
k−1θ̃k − ϕkŵk+1) + (ϕT

k θ̃k+1)
2

= θ̃T
k P−1

k−1θ̃k − 2ŵk+1ϕ
T
k θ̃k + ϕT

k Pk−1ϕkŵ
2
k+1 + (ϕT

k θ̃k+1)
2

Expanding the term ŵk+1ϕ
T
k θ̃k will give the bound: We have

ϕT
k θ̃k = ϕT

k θ̃k+1 +
ϕT

k Pk−1ϕkek+1

1 + ϕT
k
Pk−1ϕk

= ϕT
k θ̃k+1 + ϕT

k Pk−1ϕkŵk+1

Hence,

Qk+1 = Qk − 2ϕT
k θ̃k+1ŵk+1 − 2ϕT

k Pk−1ϕkŵ
2
k+1 + ϕT

k Pk−1ϕkŵ
2
k+1 + (ϕT

k θ̃k+1)
2

= Qk − 2ϕT
k θ̃k+1ŵk+1 − ϕT

k Pk−1φkŵ
2
k+1 + (φT

k θ̃k+1)
2

The “key identity” completes the proof. ut


