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Handout: Convergence of Extended Least Squares

We again consider the noisy linear system
y(k+1) = go(k)" 0o + w(k + 1), (1)
where now ¢, (k) contains noise variables, as well as input-output variables.
The Extended Least Squares algorithm (ELS, or AML) is analyzed in Lai & Wei “Extended least squares

and their application to adaptive control and prediction in linear systems,” IEEE T.A.C. vol AC-31, no.
10, October 1986, pp. 898-906. We give here a development of the main ideas.

The ELS algorithm The aposteriori error w, and the apriori error e are defined, respectively, by
Wy = Yn— @g—lén
en = Yn—Ph 10n1,

where the pseudo-regression vector ¢ is given by
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The ELS algorithm is then given by
én = én—l + Pn—lgon—len (2)
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Just as in the RLS estimator, the recursion for 6 can be rewritten using the recursion for P. First

expand P,yp, as follows:
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Applying this to the estimate update equation gives,
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The apriori and aposteriori prediction errors are closely related: Using the recursion for é, we have
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It follows from subtraction that
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which shows that
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This also gives the recursion én = én_l + Py _opn_1Wp.



A key identity The following result is what allows us to mimic the analysis of the RLS algorithm
{CE)(@(2) —w()}, = @n10n (6)

where 0, is defined here as 0, — 0,,, and 0, = (—a1,...,b1,...,c1,...).
The derivation of (6) is a simple consequence of the definitions:
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Lyapunov Recursion We can now examine the “Lyapunov function” ) which was used in Handout # 2
in the analysis of RLS. The following recursion will be derived below.
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To exploit this recursion, we apply the following lemma from linear systems theory: Suppose that the filter

% - % is strictly positive real. Then there exists > oo and K € R such that
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The SPR property gives the bound
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Consider the “cross term” in this bound, which depends linearly on wg;. From property (P1) of white
noise, from Handout # 2,
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Using this probabilistic bound, we can then proceed using simple algebraic manipulations. Observe that
from (5) we have
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This and (P1) thus gives
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In words, the cross term is insignificant when compared with other quantities in the Lyapunov recursion.
The bound on @ can therefore be written as
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where the last bound is identical to that used in the analysis of RLS.



Conclusions: Just as with RLS, suppose that the disturbance w is a white noise sequence, and that for

each n, the noise variable w,, is statistically independent of {¢;,y;,v;,i < n — 1}. Assume moreover that

C%Z) — % is strictly positive real. Then, the ELS algorithm has the following properties:

1. Since P is positive definite, we have the bound
()\mlnPn_l)|§TL+1|2 S Qn—i—l S O(log Amaxpn_l)
Rearranging, this gives
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2. We have from the bound on @,
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But, since w, — w, = %@Z_lén, and the polynomial C' is stable, we must also have
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3. Finally, using the identity
OF Ok = 1011 — OF Poc10k Wt

we get the elementary bound
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The bound on ) then gives
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Typically, we will find that n%rl log Aax Pt — 0. This is a very mild stability result. So, the bounds
above show that wj is a good approximation of wy, and that output predictions will be accurate, even
without persistence of excitation.



Proof of Lyapunov recursion:
Qi1 = O (P + orl )0
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Expanding the term @kﬂgo;{ék will give the bound: We have
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Hence,
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The “key identity” completes the proof.



