Handout: Convergence of Extended Least Squares

We again consider the noisy linear system

$$
\begin{equation*}
y(k+1)=\varphi_{\circ}(k)^{T} \theta_{\circ}+w(k+1), \tag{1}
\end{equation*}
$$

where now $\varphi_{\circ}(k)$ contains noise variables, as well as input-output variables.
The Extended Least Squares algorithm (ELS, or AML) is analyzed in Lai \& Wei "Extended least squares and their application to adaptive control and prediction in linear systems," IEEE T.A.C. vol AC-31, no. 10, October 1986, pp. 898-906. We give here a development of the main ideas.

The ELS algorithm The aposteriori error \widehat{w}, and the apriori error e are defined, respectively, by

$$
\begin{aligned}
\widehat{w}_{n} & =y_{n}-\varphi_{n-1}^{T} \hat{\theta}_{n} \\
e_{n} & =y_{n}-\varphi_{n-1}^{T} \hat{\theta}_{n-1},
\end{aligned}
$$

where the pseudo-regression vector φ is given by

$$
\varphi_{n-1}=\left(y_{n-1}, \ldots, y_{n-p}, u_{n-1}, \ldots, u_{n-p}, \widehat{w}_{n-1}, \ldots, \widehat{w}_{n-p}\right)^{T} .
$$

The ELS algorithm is then given by

$$
\begin{align*}
\hat{\theta}_{n} & =\hat{\theta}_{n-1}+P_{n-1} \varphi_{n-1} e_{n} \tag{2}\\
P_{n} & =P_{n-1}-\frac{P_{n-1} \varphi_{n} \varphi_{n}^{T} P_{n-1}}{1+\varphi_{n}^{T} P_{n-1} \varphi_{n}} \tag{3}
\end{align*}
$$

Just as in the RLS estimator, the recursion for $\hat{\theta}$ can be rewritten using the recursion for P. First expand $P_{n} \varphi_{n}$ as follows:

$$
\begin{aligned}
P_{n} \varphi_{n} & =P_{n-1} \varphi_{n}-\frac{\left(\varphi_{n}^{T} P_{n-1} \varphi_{n}\right) P_{n-1} \varphi_{n}}{1+\varphi_{n}^{T} P_{n-1} \varphi_{n}} \\
& =\frac{P_{n-1} \varphi_{n}}{1+\varphi_{n}^{T} P_{n-1} \varphi_{n}}
\end{aligned}
$$

Applying this to the estimate update equation gives,

$$
\begin{equation*}
\hat{\theta}_{n}=\hat{\theta}_{n-1}+\frac{P_{n-2} \varphi_{n-1} e_{n}}{1+\varphi_{n-1}^{T} P_{n-2} \varphi_{n-1}} \tag{4}
\end{equation*}
$$

The apriori and aposteriori prediction errors are closely related: Using the recursion for $\hat{\theta}$, we have

$$
\varphi_{n-1}^{T} \hat{\theta}_{n}=\varphi_{n-1}^{T} \hat{\theta}_{n-1}+\frac{\varphi_{n-1}^{T} P_{n-2} \varphi_{n-1} e_{n}}{1+\varphi_{n-1}^{T} P_{n-2} \varphi_{n-1}}
$$

It follows from subtraction that

$$
\widehat{w}_{n}=y_{n}-\varphi_{n-1}^{T} \hat{\theta}_{n}=y_{n}-\varphi_{n-1}^{T} \hat{\theta}_{n-1}-\left(\frac{\varphi_{n-1}^{T} P_{n-2} \varphi_{n-1} e_{n}}{1+\varphi_{n-1}^{T} P_{n-2} \varphi_{n-1}}\right)
$$

which shows that

$$
\begin{equation*}
\widehat{w}_{n}=\frac{e_{n}}{1+\varphi_{n-1}^{T} P_{n-2} \varphi_{n-1}} . \tag{5}
\end{equation*}
$$

This also gives the recursion $\hat{\theta}_{n}=\hat{\theta}_{n-1}+P_{n-2} \varphi_{n-1} \widehat{w}_{n}$.

A key identity The following result is what allows us to mimic the analysis of the RLS algorithm

$$
\begin{equation*}
\{C(z)(\widehat{w}(z)-w(z))\}_{n}=\varphi_{n-1}^{T} \tilde{\theta}_{n} \tag{6}
\end{equation*}
$$

where $\tilde{\theta}_{n}$ is defined here as $\theta_{\circ}-\hat{\theta}_{n}$, and $\theta_{\circ}=\left(-a_{1}, \ldots, b_{1}, \ldots, c_{1}, \ldots\right)$.
The derivation of (6) is a simple consequence of the definitions:

$$
\begin{aligned}
C(z)(\widehat{w}(z)-w(z))_{n}= & (C-1) \widehat{w}_{n}-C w_{n}+\widehat{w}_{n} \\
= & \left(c_{1}, \ldots, c_{p}\right)\left(\begin{array}{c}
\widehat{w}_{n-1} \\
\vdots \\
\widehat{w}_{n-p}
\end{array}\right)-C w_{n}+\widehat{w}_{n} \\
= & -\left(a_{1}, \ldots, a_{p}\right)\left(\begin{array}{c}
y_{n-1} \\
\vdots \\
y_{n-p}
\end{array}\right)+\left(b_{1}, \ldots, b_{p}\right)\left(\begin{array}{c}
u_{n-1} \\
\vdots \\
u_{n-p}
\end{array}\right)+\left(c_{1}, \ldots, c_{p}\right)\left(\begin{array}{c}
\widehat{w}_{n-1} \\
\vdots \\
\widehat{w}_{n-p}
\end{array}\right) \\
& -y_{n}+\widehat{w}_{n} \\
= & \varphi_{n-1}^{T} \theta_{\circ}-y_{n}+\left(y_{n}-\phi_{n-1}^{T} \hat{\theta}_{n}\right) \\
= & \varphi_{n-1}^{T} \tilde{\theta}_{n}
\end{aligned}
$$

Lyapunov Recursion We can now examine the "Lyapunov function" Q which was used in Handout \# 2 in the analysis of RLS. The following recursion will be derived below.

$$
\begin{aligned}
Q_{k+1}:= & \tilde{\theta}_{k+1}^{T} P_{k}^{-1} \tilde{\theta}_{k+1} \\
= & Q_{k}-2\left(\varphi_{k}^{T} \tilde{\theta}_{k+1}\right)\left[\left(\frac{1}{C(z)}-\frac{1}{2}\right) \varphi_{k}^{T} \tilde{\theta}_{k+1}\right] \\
& -\varphi_{k}^{T} P_{k-1} \phi_{k} \widehat{w}_{k+1}^{2}+2 w_{k+1}^{2} \frac{\varphi_{k}^{T} P_{k-1} \varphi_{k}}{1+\varphi_{k}^{T} P_{k-1} \phi_{k}} \\
& 2 w_{k+1}\left(\varphi_{k}^{T} \tilde{\theta}_{k}+\frac{\varphi_{k}^{T} P_{k-1} \phi_{k}}{1+\varphi_{k}^{T} P_{k-1} \varphi_{k}}\left(e_{k+1}-w_{k+1}\right)\right) .
\end{aligned}
$$

To exploit this recursion, we apply the following lemma from linear systems theory: Suppose that the filter $\frac{1}{C(z)}-\frac{1}{2}$ is strictly positive real. Then there exists $\delta>\infty$ and $K \in \mathbb{R}$ such that

$$
\sum_{k=0}^{n} 2\left(\varphi_{k}^{T} \tilde{\theta}_{k+1}\right)\left[\left(\frac{1}{C(z)}-\frac{1}{2}\right) \varphi_{k}^{T} \tilde{\theta}_{k+1}\right] \geq \delta \sum_{k=0}^{n}\left(\varphi_{k}^{T} \tilde{\theta}_{k+1}\right)^{2}+K, \quad n \geq 1
$$

The SPR property gives the bound

$$
\begin{aligned}
Q_{n+1} & +\delta \sum_{k=0}^{n}\left|\varphi_{k}^{T} \tilde{\theta}_{k+1}\right|^{2}+K \\
& +\sum_{k=0}^{n} \varphi_{k}^{T} P_{k-1} \varphi_{k} \widehat{w}_{k+1}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& +2 \sum_{k=0}^{n} w_{k+1}\left(\varphi_{k}^{T} \tilde{\theta}_{k}+\frac{\varphi_{k}^{T} P_{k-1} \varphi_{k}}{1+\varphi_{k}^{T} P_{k-1} \varphi_{k}}\left(e_{k+1}-w_{k+1}\right)\right) \\
& \leq \quad Q_{0}+2 \sum_{k=0}^{n} \frac{\varphi_{k}^{T} P_{k-1} \varphi_{k}}{1+\varphi_{k}^{T} P_{k-1} \varphi_{k}} w_{k+1}^{2} .
\end{aligned}
$$

Consider the "cross term" in this bound, which depends linearly on w_{k+1}. From property (P1) of white noise, from Handout \# 2,

$$
\begin{aligned}
& 2 \sum_{k=0}^{n} w_{k+1}\left(\varphi_{k}^{T} \tilde{\theta}_{k}+\frac{\varphi_{k}^{T} P_{k-1} \varphi_{k}}{1+\varphi_{k}^{T} P_{k-1} \varphi_{k}}\left(e_{k+1}-w_{k+1}\right)\right) \\
& \quad=o \sum_{k=0}^{n}\left(\varphi_{k}^{T} \tilde{\theta}_{k}+\frac{\varphi_{k}^{T} P_{k-1} \varphi_{k}}{1+\varphi_{k}^{T} P_{k-1} \varphi_{k}}\left(e_{k+1}-w_{k+1}\right)\right)^{2}
\end{aligned}
$$

Using this probabilistic bound, we can then proceed using simple algebraic manipulations. Observe that from (5) we have

$$
\varphi_{k}^{T} \tilde{\theta}_{k}+\frac{\varphi_{k}^{T} P_{k-1} \varphi_{k}}{1+\varphi_{k}^{T} P_{k-1} \varphi_{k}} e_{k+1}=\varphi_{k}^{T} \tilde{\theta}_{k+1} .
$$

This and (P1) thus gives

$$
\begin{aligned}
& 2 \sum_{k=0}^{n} w_{k+1}\left(\varphi_{k}^{T} \tilde{\theta}_{k}+\frac{\varphi_{k}^{T} P_{k-1} \varphi_{k}}{1+\varphi_{k}^{T} P_{k-1} \varphi_{k}}\left(e_{k+1}-w_{k+1}\right)\right) \\
& \quad=o\left(\sum_{k=0}^{n}\left(\varphi_{k}^{T} \tilde{\theta}_{k+1}+\frac{\varphi_{k}^{T} P_{k-1} \varphi_{k}}{1+\varphi_{k}^{T} P_{k-1} \varphi_{k}} w_{k+1}\right)^{2}\right) \\
& \quad=o\left(\sum_{k=0}^{n}\left(\left(\varphi_{k}^{T} \tilde{\theta}_{k+1}\right)^{2}+\left(\frac{\varphi_{k}^{T} P_{k-1} \varphi_{k}}{1+\varphi_{k}^{T} P_{k-1} \varphi_{k}}\right)^{2} w_{k+1}^{2}\right)\right) \\
& \quad=o\left(\sum_{k=0}^{n}\left(\varphi_{k}^{T} \tilde{\theta}_{k+1}\right)^{2}+\frac{\varphi_{k}^{T} P_{k-1} \varphi_{k}}{1+\varphi_{k}^{T} P_{k-1} \varphi_{k}} w_{k+1}^{2}\right)
\end{aligned}
$$

In words, the cross term is insignificant when compared with other quantities in the Lyapunov recursion.
The bound on Q can therefore be written as

$$
\begin{aligned}
& Q_{n+1}+\sum_{k=0}^{n}\left(\varphi_{k}^{T} \tilde{\theta}_{k+1}\right)^{2}+\sum_{k=0}^{n} \varphi_{k}^{T} P_{k-1} \varphi_{k} \widehat{w}_{k+1}^{2} \\
& \quad=O\left(\sum_{k=0}^{n} \frac{\varphi_{k}^{T} P_{k-1} \varphi_{k}}{1+\varphi_{k}^{T} P_{k-1} \varphi_{k}} w_{k+1}^{2}\right) \\
& \quad=O\left(\sum_{k=0}^{n} \frac{\varphi_{k}^{T} P_{k-1} \varphi_{k}}{1+\varphi_{k}^{T} P_{k-1} \varphi_{k}}\right)=O\left(\log \lambda_{\max } P_{n}^{-1}\right)
\end{aligned}
$$

where the last bound is identical to that used in the analysis of RLS.

Conclusions: Just as with RLS, suppose that the disturbance \mathbf{w} is a white noise sequence, and that for each n, the noise variable w_{n} is statistically independent of $\left\{\phi_{i}, y_{i}, v_{i}, i \leq n-1\right\}$. Assume moreover that $\frac{1}{C(z)}-\frac{1}{2}$ is strictly positive real. Then, the ELS algorithm has the following properties:

1. Since P is positive definite, we have the bound

$$
\left(\lambda_{\min } P_{n}^{-1}\right)\left|\tilde{\theta}_{n+1}\right|^{2} \leq Q_{n+1} \leq O\left(\log \lambda_{\max } P_{n}^{-1}\right)
$$

Rearranging, this gives

$$
\left|\tilde{\theta}_{n+1}\right|^{2}=O\left(\frac{\log \lambda_{\max } P_{n}^{-1}}{\lambda_{\min } P_{n}^{-1}}\right)
$$

2. We have from the bound on Q,

$$
\sum_{k=0}^{n}\left(\varphi_{k}^{T} \tilde{\theta}_{k+1}\right)^{2}=O\left(\log \lambda_{\max } P_{n}^{-1}\right)
$$

But, since $\widehat{w}_{n}-w_{n}=\frac{1}{C} \varphi_{n-1}^{T} \tilde{\theta}_{n}$, and the polynomial C is stable, we must also have

$$
\sum_{k=0}^{n+1}\left(\widehat{w}_{k}-w_{k}\right)^{2}=O\left(\log \lambda_{\max } P_{n}^{-1}\right)
$$

3. Finally, using the identity

$$
\varphi_{k}^{T} \tilde{\theta}_{k}=\varphi_{k}^{T} \tilde{\theta}_{k+1}-\varphi_{k}^{T} P_{k-1} \varphi_{k} \widehat{w}_{k+1}
$$

we get the elementary bound

$$
\begin{aligned}
\frac{\left|\varphi_{k}^{T} \tilde{\theta}_{k}\right|^{2}}{1+\varphi_{k}^{T} P_{k-1} \varphi_{k}} & \leq 2 \frac{\left(\varphi_{k}^{T} \tilde{\theta}_{k+1}\right)^{2}}{1+\varphi_{k}^{T} P_{k-1} \varphi_{k}}+2 \frac{\left(\varphi_{k}^{T} P_{k-1} \varphi_{k}\right)^{2} \widehat{w}_{k+1}^{2}}{1+\varphi_{k}^{T} P_{k-1} \varphi_{k}} \\
& \leq 2\left(\varphi_{k}^{T} \tilde{\theta}_{k+1}\right)^{2}+2 \varphi_{k}^{T} P_{k-1} \varphi_{k} \widehat{w}_{k+1}^{2} .
\end{aligned}
$$

The bound on Q then gives

$$
\sum_{k=0}^{n} \frac{\left|\varphi_{k}^{T} \tilde{\theta}_{k}\right|^{2}}{1+\varphi_{k}^{T} P_{k-1} \varphi_{k}}=O\left(\log \lambda_{\max } P_{n}^{-1}\right)
$$

Typically, we will find that $\frac{1}{n+1} \log \lambda_{\max } P_{n}^{-1} \rightarrow 0$. This is a very mild stability result. So, the bounds above show that \widehat{w}_{k} is a good approximation of w_{k}, and that output predictions will be accurate, even without persistence of excitation.

Proof of Lyapunov recursion:

$$
\begin{aligned}
Q_{k+1} & =\tilde{\theta}_{k+1}^{T}\left(P_{k-1}^{-1}+\varphi_{k} \varphi_{k}^{T}\right) \tilde{\theta}_{k+1} \\
& =\tilde{\theta}_{k+1}^{T} P_{k-1}^{-1} \tilde{\theta}_{k+1}+\left(\varphi_{k}^{T} \tilde{\theta}_{k+1}\right)^{2}
\end{aligned}
$$

Also, $\tilde{\theta}_{k+1}=P_{k-1}\left[P_{k-1}^{-1} \tilde{\theta}_{k}-\varphi_{k} \widehat{w}_{k+1}\right]$. So,

$$
\begin{aligned}
Q_{k+1} & =\left(P_{k-1}^{-1} \tilde{\theta}_{k}-\varphi_{k} \widehat{w}_{k+1}\right)^{T} P_{k-1} P_{k-1}^{-1} P_{k-1}\left(P_{k-1}^{-1} \tilde{\theta}_{k}-\varphi_{k} \widehat{w}_{k+1}\right)+\left(\varphi_{k}^{T} \tilde{\theta}_{k+1}\right)^{2} \\
& =\tilde{\theta}_{k}^{T} P_{k-1}^{-1} \tilde{\theta}_{k}-2 \widehat{w}_{k+1} \varphi_{k}^{T} \tilde{\theta}_{k}+\varphi_{k}^{T} P_{k-1} \varphi_{k} \widehat{w}_{k+1}^{2}+\left(\varphi_{k}^{T} \tilde{\theta}_{k+1}\right)^{2}
\end{aligned}
$$

Expanding the term $\widehat{w}_{k+1} \varphi_{k}^{T} \tilde{\theta}_{k}$ will give the bound: We have

$$
\begin{aligned}
\varphi_{k}^{T} \tilde{\theta}_{k} & =\varphi_{k}^{T} \tilde{\theta}_{k+1}+\frac{\varphi_{k}^{T} P_{k-1} \varphi_{k} e_{k+1}}{1+\varphi_{k}^{T} P_{k-1} \varphi_{k}} \\
& =\varphi_{k}^{T} \tilde{\theta}_{k+1}+\varphi_{k}^{T} P_{k-1} \varphi_{k} \widehat{w}_{k+1}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
Q_{k+1} & =Q_{k}-2 \varphi_{k}^{T} \tilde{\theta}_{k+1} \widehat{w}_{k+1}-2 \varphi_{k}^{T} P_{k-1} \varphi_{k} \widehat{w}_{k+1}^{2}+\varphi_{k}^{T} P_{k-1} \varphi_{k} \widehat{w}_{k+1}^{2}+\left(\varphi_{k}^{T} \tilde{\theta}_{k+1}\right)^{2} \\
& =Q_{k}-2 \varphi_{k}^{T} \tilde{\theta}_{k+1} \widehat{w}_{k+1}-\varphi_{k}^{T} P_{k-1} \phi_{k} \widehat{w}_{k+1}^{2}+\left(\phi_{k}^{T} \tilde{\theta}_{k+1}\right)^{2}
\end{aligned}
$$

The "key identity" completes the proof.

