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1 Course overview

The course outline is available athttp://black.csl.uiuc.edu/˜meyn/pages/ECE555-2008

In short, there are four parts,

I Markov Models II Optimal Control

III Linear Theory IV Adaptation and Learning.

In this first lecture we survey some of the key concepts to be covered in the course.

1.1 Markov models

We letX = {X(0),X(1),X(2), . . . } denote the “state process” for a Markov model. For each
time t ≥ 0, it is assumed thatX(t) takes values in a state space denotedX. The state space will
be a subset of Euclidean spaceR

n for somen ≥ 1.
Recall thatX is Markov provided the “memoryless property” holds. We describe this as

follows: For any open setO ⊂ X, any timet, and any initialX(0),

P{X(t + 1) ∈ O | X(0), . . . ,X(t)} = P{X(t + 1) ∈ O | X(t)} (1)

We always assume thatX hasstationary increments, which means that the right hand side of (1)
is independent oft. We letP denote thetransition kernel,

P (x,O) = P{X(t + 1) ∈ O | X(t) = x}, x ∈ X, O ⊂ X. (2)

If h : X → R is a continuous function, it follows that the conditional expectation is also expressed
in terms ofP :

E[h(X(t + 1)) | X(0), . . . ,X(t − 1);X(t) = x] = E[h(X(t + 1)) | X(t) = x]

=

∫
P (x, dx1)h(x1)

(3)

We restrict to open sets and continuous functions in these definitions only to avoid discussion
of “measurability”. Throughout most of the course we restrict to countable state spaces, in which
case no restrictions are placed on the setO or function h. If X is finite, of sizem, thenP is
interpreted as anm×m matrix. In this caseP (x0, x1) is the probability of moving fromx0 to x1

in one time-step. The conditional expectation is expressedas a sum,

E[h(X(t + 1)) | X(t) = x] =
∑

x1∈X

P (x, x1)h(x1)

1.1.1 Examples

We begin with three basic examples. The linear model is the standard model in physics, systems
theory, economics, and many other areas.
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Example 1.1. The Linear State Space Model

SupposeX = {X(k)} is a stochastic process for which there is ann × n matrix F and an i.i.d.
sequenceE taking values inRn such that the sequence of state values satisfies the recursion,

X(k + 1) = FX(k) + E(k + 1), k ∈ Z+

whereX(0) ∈ R is independent ofE. ThenX is called the (uncontrolled) linear state space
model.

Its transition kernel is easily described: For anyx ∈ X = R
n and any setO ⊂ X we have,

P (x,O) = P{X(1) ∈ O | X(0) = x} = P{Fx + E(1) ∈ O}

If in particular E(1) is GaussianN(0,Σ), thenP (x, · ) is also a Gaussian distribution, but with
meanFx rather than zero.

We also consider the linear state space model without noise:We denote the process using a
lower case variable,

x(k + 1) = Fx(k), k ≥ 0. (4)

The deterministic model is also Markovian: even if we know all of the values of{x(t), t ≤ k}
then we will still predictx(k + 1) in the same way, with the same (exact) accuracy, based solely
on (4) which uses only knowledge ofx(k).

Trajectories of the model with and without noise are shown inFigure1. The common choice
of F is F = I + ∆A with I equal to a2 × 2 identity matrix,A =

(
−0.2, 1

−1, −0.2

)
and∆ = 0.02. The

figure on the left shows a trajectory of the model without noise. The trajectory spirals towards the
origin, and is intuitively “stable”. For the model with noise, the common distribution ofE(t) was
taken Gaussian, of the formE(t) = HW (t) with W (t) scalarN(0, 1) andH =

(
2.5

2.5

)
.
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Figure 1: At left is a sample path generated by the deterministic linear model onR2. At right is a
sample path from the linear state space model onR

2 with Gaussian noise.

We will see that, in wide generality, if the deterministic linear model is stable, and the distri-
bution ofE(t) is “reasonable”, then the linear state space model with non-zero noise is also stable
in a stochastic sense. Generalizations of this principle hold for more general nonlinear models.

This procedure can be generalized: A Markov model can be constructed as a nonlinear system
perturbed by i.i.d. noise.
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Example 1.2. The Nonlinear Linear State Space Model

Suppose thatf : R
n × R

m → R
n is continuous, and thatE is i.i.d., taking values inRm. The

nonlinear linear state space model is defined by the recursion,

X(k + 1) = f(X(k), E(k + 1)), k ∈ Z+

whereX(0) ∈ R is independent ofE . For anyx ∈ X = R
n and any setO ⊂ X we have,

P (x,O) = P{X(1) ∈ O | X(0) = x} = P{f(x, E(1)) ∈ O}

Random walks are defined by taking successive sums of independent and identically dis-
tributed (i.i.d.) random variables.

Example 1.3. Random Walks

Suppose thatX = {X(k); k ∈ Z+} is a sequence of random variables defined by,

X(k + 1) = X(k) + E(k + 1), k ∈ Z+

whereX(0) ∈ R is independent ofE , and the sequenceE is i.i.d., taking values inR. ThenX is
called arandom walkonR. The random walk is a special case of the one-dimensional linear state
space model in whichF = 1.

Suppose that the stochastic processX is defined by the recursion,

X(k + 1) = [X(k) + E(k + 1)]+ := max(0,X(k) + E(k + 1)) , k ∈ Z+,

where againX(0) ∈ R, andE is an i.i.d. sequence of random variables taking values inR. Then
X is called thereflected random walk. The reflected random walk is a special case of the one-
dimensional nonlinear linear state space model in whichf(x, e) = [x + e]+ for eachx, e ∈ R.

The reflected random walk is both a model for storage systems and a model for queueing
systems. For all such applications there are similar concerns and concepts of the structure and the
stability of the models: we need to know whether a dam overflows, whether a queue ever empties,
whether a computer network jams.

In fact, a standard queueing model is one of the simplest examples of a Markov chain, and is
also an example of the reflected random walk.

Example 1.4. The M/M/1 queue

The transition function for theM/M/1 queueis defined as

P(Q(t + 1) = y | Q(t) = x) = P (x, y) =

{
α if y = x + 1

µ if y = (x − 1)+,
(5)

whereα denotes the arrival rate to the queue,µ is the service rate, and these parameters are
normalized so thatα + µ = 1.
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Figure 2: The M/M/1 queue: In the stable case on the left we seethat the processQ(t) appears
piecewise linear, with a relatively small high frequency ‘disturbance’. The process explodes lin-
early in the unstable case shown at right.
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Figure 3: A close-up of the trajectory shown on the left hand side of Figure2 with loadρ = 0.9 <
1. After a transient period, the queue length oscillates around its steady-state mean of9.

The parameterρ := α/µ is known as theload for the queue. Ifρ := α/µ < 1 then the arrival
rate is strictly less than the service rate. In this case the process is ergodic: there is a probability
measureπ such that for any initial queue lengthQ(0), and any integerm ≥ 0,

lim
t→∞

P{Q(t) = m} = π(m)

The probability can be identified as geometric with parameter ρ, so thatπ(m) = (1 − ρ)ρm. The
existence of an invariant measureπ is interpreted as a form of stability for the queueing model,
so that the sample path behavior looks like that shown in the left hand side of Figure2 and in
Figure3.

1.1.2 Value functions

Example 1.5. Value functions for the LSS Model

Let Q ≥ 0 be a positive semi-definiten × n matrix, and interpret the quadraticc(x) = 1

2
xTQx as

acost function. For the deterministic model (4) the total costis expressed,

J(x) =
∞∑

t=0

c(x(t)), x(0) = x ∈ R
n.
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The functionJ is an example of a value function for the deterministic model. It satisfies a dynamic
programing equation,

J(x) = c(x) + J(x(1)), x(0) = x, x(1) = Fx

This is seen by writingJ(x) = c(x)+
∑

∞

t=1
c(x(t)). In fact, providedJ is finite-valued, it can be

expressed as a quadraticJ(x) = 1

2
xTMx. The dynamic programing equation becomes,

1

2
xTMx = 1

2
xTQx + 1

2
(Fx)TMFx, x ∈ R

n

Hence,M solves the Lyapunov equation,

M = Q + F TMF (6)

The functionJ also solves a dynamic programming equation for the model with noise. Sup-
pose thatE is i.i.d. with zero mean, and finite second moment. We then have,

E[J(X(1)) | X(0) = x] = E[1
2
(Fx + E(1))TM(Fx + E(1))]

Expanding the sum, and using the assumption thatE[E(1)] = 0, we obtain,

E[J(X(1)) | X(0) = x] = 1

2
(Fx)TMFx + η

with η = E[1
2
(E(1))TME(1)]. From the Lyapunov equation (6) we obtain 1

2
(Fx)TMAx =

1

2
xT(M − Q)x. We conclude,

E[J(X(1)) | X(0) = x] = J(x) − c(x) + η (7)

The identity (7) is known asPoisson’s equationfor the Markov model, withforcing functionc.
We will see thatη is the steady-state cost,

η = lim
t→∞

E[c(X(t)) | X(0) = x], x ∈ R
n. (8)

The conclusion that the total costJ serves as a value function for the stochastic and determin-
istic models is a theme in this course. In nonlinear settingsa deterministic model often provides
structural insight that can be used to approximate a value function for the Markov model.

1.2 Optimization

Suppose now that a control sequenceU is introduced, and that the cost function may depend on
both the control and the state. We illustrate the issues to beaddressed using the linear state space
model.

Example 1.6. Optimization of the LSS Model

The controlled linear model is defined as in Example1.1. Suppose thatU evolves onRm, and let
G denote ann × m matrix. The controlled linear state space model is defined bythe recursion,

X(k + 1) = FX(k) + GU(k) + E(k + 1), k ∈ Z+ (9)
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It is again assumed thatX(0) ∈ R is independent ofE . Moreover, for eacht it is assumed that
{U(k) : k ≤ t} is independent of{E(k) : k > t}. We usually assume thatU is adapted toX:
For eacht, there is a functionφ such that,

U(t) = φ(X(0), . . . ,X(t), t).

Let Q ≥ 0 by a positive semi-definiten× n matrix,R > 0 a positive definitem×m matrix,
and define the quadratic cost byc(x, u) = 1

2
(xTQx + uTRu). For the model without noise we

defined the (optimal) value function by,

J∗(x) = min
u

[ ∞∑

t=0

c(x(t), u(t))
]
, x(0) = x ∈ R

n,

where the minimum is over all adaptedu. We again have a dynamic programming equation,

J∗(x) = min
u

[
c(x, u) + J∗(x(1))

]
, x(0) = x ∈ R

n, (10)

wherex(1) = Fx + Bu depends onu.
We will see thatJ∗ is again quadratic,J(x) = 1

2
xTMx for x ∈ R

n, and that the optimal
control is state feedbacku(t) = Kx(t) for somem × n matrix K (determined fromM through
the minimization (10)).

And, the value function solves a dynamic programming equation for the model with noise:
Exactly as in (7) we have,

min
u

E[c(X(0), U(0)) + J∗(X(1)) | X(0) = x, U(0) = u] = J∗(x) + η∗ (11)

The constantη∗ is the minimal average cost, minimizing the limit (8) over all adaptedU .

We will develop dynamic programming equations for general Markov models, and consider
deterministic analogs to obtain structural insights. We will also consider control ofpartially ob-
servedmodels in whichX is not directly observed.

1.3 Linear theory

The development of the Lyapunov equation and Riccatti equation is identical to the continuous
time construction seen in, for example, ECE 515 — if these terms aren’t familiar to you, don’t
worry! For the linear state space model with Gaussian noise the partially observed control problem
is solved using the Kalman filter.

1.4 Adaptation & learning

Learning in this course means finding the best approximationof a value function or a system
model over a given class. Moreover, the approximation is based on observations of the system of
interest, perhaps while the system is being controlled. Four instances of learning are,
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(i) Simulation: To estimate the average cost (8) we can construct sample path averages from
computer simulation,

η̂(n) =
1

n

n−1∑

t=0

c(X(t)), n ≥ 1.

Simulation is a special case of the stochastic approximation algorithm of Robbins and Monro,
which is a basis of the learning mechanisms to be developed inthe next three examples.

(ii) Stochastic adaptive control: What if the matrices(F,G) appearing in (9) are not known?
These parameters can be estimated using methods similar to simulation.

(iii) Q-learning: The controlled Markov model is based on a controlled transition kernel denoted
Pu, whereu varies over possible control values. TheQ-learning algorithm learns the dynam-
ics defined byPu, and simultaneously learns an optimal policy.

(iv) TD-learning: A method to learn optimal approximations of value functions for a Markov
model.
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