Handout: Convergence of Least Squares

In this handout we consider the noisy linear system

$$
\begin{equation*}
y_{k+1}=\varphi_{k}^{T} \theta^{\circ}+v_{k+1} . \tag{1}
\end{equation*}
$$

The least squares algorithm for estimating θ° is defined by the equation

$$
\begin{equation*}
\hat{\theta}_{k+1}=\left(\sum_{i=0}^{k} \varphi_{i} \varphi_{i}^{T}\right)^{-1}\left(\sum_{i=0}^{k} \varphi_{i} y_{i+1}\right) \tag{2}
\end{equation*}
$$

Substituting the expression for y, the parameter estimate is thus given by

$$
\hat{\theta}_{k+1}=\theta^{\circ}+\left(\sum_{i=0}^{k} \varphi_{i} \varphi_{i}^{T}\right)^{-1}\left(\sum_{i=0}^{k} \varphi_{i} v_{i+1}\right)
$$

This equation makes the parameter estimation error explicit. The main question is whether or not the estimates converge, so that $\hat{\theta}_{n} \rightarrow \theta^{\circ}$ as $n \rightarrow \infty$. To ensure convergence, we must impose some conditions on the disturbance sequence \mathbf{v}, as the following example shows.

Example of bias Take the simple scalar model

$$
y_{t+1}=\theta^{\circ} y_{t}+c_{1} w_{t}+w_{t+1}
$$

with $\theta^{\circ}=0$, and \mathbf{w} a wide sense white process. Then

$$
\hat{\theta}_{k+1}=\left(\frac{1}{k} \sum_{i=0}^{k} y_{i}^{2}\right)^{-1}\left(\frac{1}{k} \sum_{i=0}^{k} y_{i} y_{i+1}\right)
$$

The process \mathbf{y} is wide sense stationary with

$$
\begin{aligned}
& R_{y}(0)=\lim \frac{1}{N} \sum_{i=0}^{N} y_{i}^{2}=E\left[\left(c_{1} w_{0}+w_{1}\right)^{2}\right]=\sigma_{w}^{2}\left(c_{1}^{2}+1\right) \\
& R_{y}(1)=\lim \frac{1}{N} \sum_{i=0}^{N} y_{i} y_{i+1}=E\left[\left(c_{1} w_{0}+w_{1}\right)\left(c_{1} w_{1}+w_{2}\right)\right]=\sigma_{w}^{2} c_{1}
\end{aligned}
$$

It follows that

$$
\lim _{n \rightarrow \infty} \hat{\theta}_{n}=\frac{c_{1}}{1+c_{1}^{2}}
$$

and hence, the parameter estimates do not converge unless $c_{1}=0$. This is precisely the case

$$
y_{t+1}=\theta^{\circ} y_{t}+w_{t+1}
$$

so the noise is wide sense white.

White noise The sequence \mathbf{v} is called white if
(i) $\{v(0), v(1), \ldots\}$ are independent;
(ii) $\{v(0), v(1), \ldots\}$ have identical distributions;
(iii) The mean is zero: $\mathrm{E}[v(t)]=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{N} v(k)=0$;
(iv) The variance is finite: $\sigma_{v}^{2}=\mathrm{E}\left[v(t)^{2}\right]=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{N} v(k)^{2}<\infty$;
(v) The fourth moment is also finite: $\mathrm{E}\left[v(t)^{4}\right]=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{N} v(k)^{4}<\infty$.

White noise sequences satisfy the following important properties. Let $z_{k}=f(v(1), \ldots, v(k), k)$ be a nonanticipative function of the noise. We then have
(P1) If $\sum z_{k}^{2}=\infty$ then

$$
\lim _{N \rightarrow \infty}\left(\sum_{k=0}^{N} z_{k}^{2}\right)^{-1} \sum_{k=0}^{N} z_{k} v_{k+1}=0
$$

while if $\sum z_{k}^{2}<\infty$ then

$$
\lim _{N \rightarrow \infty} \sum_{k=0}^{N} z_{k} v_{k+1} \quad \text { exists as a finite number. }
$$

(P2) If $\left|z_{k}\right| \leq \bar{z}$ for some constant \bar{z}, and all $k \geq 0$, then

$$
\sum_{k=0}^{N}\left|z_{k}\right| v_{k+1}^{2}=O\left(\sum_{k=0}^{N}\left|z_{k}\right|\right)
$$

The "big O " notation in (P2) means that $\sum_{k=0}^{N}\left|z_{k}\right| v_{k+1}^{2} \leq K\left(\sum_{k=0}^{N}\left|z_{k}\right|\right)$ for some $K<\infty$. A "little o " notation is also commonly used: property (P1) is often written

$$
\sum_{k=0}^{N} z_{k} v_{k+1}=o\left(\sum_{k=0}^{N} z_{k}^{2}\right)
$$

The proof of these results is beyond the scope of this course, though the proofs are not difficult after ECE 434. For those of you with some probability background: the properties (P1) and (P2) follow from the Martingale Convergence Theorem and Kronecker's Lemma.

Convergence of Least Squares in White Noise

One of the most elegant bounds in system identification is due to Lai, 1982. The Recursive Least Squares (RLS) algorithm satisfies the recursive equations:

$$
\hat{\theta}_{n+1}=\hat{\theta}_{n}+\frac{P_{n-1} \varphi_{n} e_{n+1}}{1+\varphi_{n}^{T} P_{n-1} \varphi_{n}}, \quad P_{n}=P_{n-1}-\frac{P_{n-1} \varphi_{n} \varphi_{n}^{T} P_{n-1}}{1+\varphi_{n}^{T} P_{n-1} \varphi_{n}}
$$

where $e_{n+1}=y_{n+1}-\hat{\theta}_{n}^{T} \varphi_{n}$ is the prediction error. The parameter estimation error is defined as $\tilde{\theta}_{n}=\theta^{\circ}-\hat{\theta}_{n}$.
Suppose that the disturbance \mathbf{v} in (1) is a white noise sequence, and that for each n, the noise variable v_{n} is statistically independent of $\left\{\phi_{i}, y_{i}, v_{i}, i \leq n-1\right\}$. Then the $R L S$ algorithm satisfies

$$
\begin{aligned}
\left|\tilde{\theta}_{n}\right|^{2} & =O\left(\frac{\log \lambda_{\max }\left(P_{n-1}^{-1}\right)}{\lambda_{\min }\left(P_{n-1}^{-1}\right)}\right) \\
\sum_{i=0}^{n} \frac{\left|\varphi_{i}^{T} \tilde{\theta}_{i}\right|^{2}}{1+\varphi_{i}^{T} P_{i-1} \varphi_{i}} & =O\left(\log \lambda_{\max }\left(P_{n}^{-1}\right)\right), \quad n \geq 1
\end{aligned}
$$

If the regression sequence is weakly persistently exciting, so that

$$
\frac{1}{N} \sum_{1}^{N} \varphi_{k} \varphi_{k}^{T} \rightarrow Q>0, \quad N \rightarrow \infty
$$

it follows that from the first inequality that

$$
\left|\tilde{\theta}_{n}\right|^{2} \leq \text { Const. } \frac{\log (n)}{n} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

The second inequality is useful in bounding the prediction error $e_{i+1}=\varphi_{i}^{T} \tilde{\theta}_{i}+v_{i+1}$.
A Lyapunov Recursion The proof of this result is based upon properties of white noise, and an examination of the "Lyapunov function"

$$
Q_{n}=\tilde{\theta}_{n}^{T} P_{n-1}^{-1} \tilde{\theta}_{n}
$$

Finding appropriate bounds on Q_{n} will give the result, since $\left|\tilde{\theta}_{n}\right|^{2} \leq Q_{n} / \lambda_{\min }\left(P_{n-1}^{-1}\right)$.
From the RLS recursions we have

$$
\tilde{\theta}_{n+1}=\left(I-\frac{P_{n-1} \varphi_{n} \varphi_{n}^{T}}{1+\varphi_{n}^{T} P_{n-1} \varphi_{n}}\right) \tilde{\theta}_{n}-\frac{P_{n-1} \varphi_{n} v_{n+1}}{1+\phi_{n}^{T} P_{n-1} \varphi_{n}}
$$

Substituting the recursion for P_{n} then gives

$$
\tilde{\theta}_{n+1}=P_{n} P_{n-1}^{-1} \tilde{\theta}_{n}-\frac{P_{n-1} \varphi_{n} v_{n+1}}{1+\varphi_{n}^{T} P_{n-1} \varphi_{n}}
$$

So, the recursion for Q_{n} becomes

$$
\begin{aligned}
Q_{n+1}=\tilde{\theta}_{n+1}^{T} P_{n}^{-1} \tilde{\theta}_{n+1}= & \tilde{\theta}_{n+1}^{T} P_{n-1}^{-1} P_{n} P_{n-1}^{-1} \tilde{\theta}_{n}-2 \hat{\theta}_{n} P_{n-1}^{-1}\left(\frac{P_{n-1} \varphi_{n} v_{n+1}}{1+\varphi_{n}^{T} P_{n-1} \theta_{n}}\right) \\
& +v_{n+1}^{2} \frac{\varphi_{n}^{T} P_{n-1} P_{n}^{-1} P_{n-1} \varphi_{n}}{\left(1+\varphi_{n}^{T} P_{n-1} \varphi_{n}\right)^{2}}
\end{aligned}
$$

The terms involving products of P_{i} can be calculated as follows:

$$
\begin{aligned}
P_{n-1}^{-1} P_{n} P_{n-1}^{-1} & =P_{n-1}^{-1}\left(P_{n-1}-\frac{P_{n-1} \varphi_{n} \varphi_{n}^{T} P_{n-1}}{1+\varphi_{n}^{T} P_{n-1} \varphi_{n}}\right) P_{n-1}^{-1} \\
& =P_{n-1}^{-1}-\frac{\varphi_{n} \varphi_{n}^{T}}{1+\varphi_{n}^{T} P_{n-1} \varphi_{n}} \\
P_{n-1} P_{n}^{-1} P_{n-1} & =P_{n-1}\left(P_{n-1}^{-1}+\varphi_{n} \varphi_{n}^{T}\right) P_{n-1} \\
& =P_{n-1}+P_{n-1} \varphi_{n} \varphi_{n}^{T} P_{n-1}
\end{aligned}
$$

We then obtain the following recursive equation:

$$
\begin{aligned}
Q_{n+1}= & Q_{n}-\frac{\left|\tilde{\theta}_{n}^{T} \varphi_{n}\right|^{2}}{1+\varphi_{n}^{T} P_{n-1} \varphi_{n}}-2 \frac{\tilde{\theta}_{n}^{T} \varphi_{n} v_{n+1}}{1+\varphi_{n}^{T} P_{n-1} \varphi_{n}} \\
& +v_{n+1}^{2} \frac{\varphi_{n}^{T} P_{n-1} \varphi_{n}}{1+\varphi_{n}^{T} P_{n-1} \varphi_{n}}
\end{aligned}
$$

Iterating this bound gives

$$
\begin{aligned}
Q_{n+1}= & Q_{0}-\sum_{i=0}^{n} \frac{\left|\tilde{\theta}_{i}^{T} \varphi_{i}\right|^{2}}{1+\varphi_{i}^{T} P_{i-1} \varphi_{i}}-2 \sum_{i=0}^{n} \frac{\tilde{\theta}_{i}^{T} \varphi_{i} v_{i+1}}{1+\varphi_{i}^{T} P_{i-1} \varphi_{i}} \\
& +\sum_{i=0}^{n} \frac{\varphi_{i}^{T} P_{i-1} \varphi_{i}}{1+\varphi_{i}^{T} P_{i-1} \varphi_{i}} v_{i+1}^{2}
\end{aligned}
$$

All of the terms on the right hand side are easily bounded using properties of white noise. We have

$$
\begin{aligned}
\sum_{i=0}^{n} \frac{\tilde{\theta}_{i}^{T} \varphi_{i} v_{i+1}}{1+\varphi_{i}^{T} P_{i-1} \varphi_{i}} & =o\left(\sum_{i=0}^{n} \frac{\left|\tilde{\theta}_{i}^{T} \varphi_{i}\right|^{2}}{\left(1+\varphi_{i}^{T} P_{i-1} \varphi_{i}\right)^{2}}\right) \\
\sum_{i=0}^{n} \frac{\varphi_{i}^{T} P_{i-1} \varphi_{i}}{1+\varphi_{i}^{T} P_{i-1} \varphi_{i}} v_{i+1}^{2} & =O\left(\sum_{i=0}^{n} \frac{\varphi_{i}^{T} P_{i-1} \varphi_{i}}{1+\varphi_{i}^{T} P_{i-1} \varphi_{i}}\right)
\end{aligned}
$$

where the first bound follows from (P1), and the second follows from (P2).
Combining these bounds finally gives

$$
Q_{n+1}+(1+o(1)) \sum_{i=0}^{n} \frac{\left|\tilde{\theta}_{i}^{T} \varphi_{i}\right|^{2}}{1+\varphi_{i}^{T} P_{i-1} \varphi_{i}}=Q_{0}+O\left(\sum_{i=0}^{n} \frac{\varphi_{i}^{T} P_{i-1} \varphi_{i}}{1+\varphi_{i}^{T} P_{i-1} \varphi_{i}}\right) .
$$

Hence both Q_{n+1} and $\sum_{i=0}^{n} \frac{\left|\tilde{\theta}_{i}^{T} \varphi_{i}\right|^{2}}{1+\varphi_{i}^{T} P_{i-1} \varphi_{i}}$ may be bounded by

$$
O\left(\sum_{i=0}^{n} \frac{\varphi_{i}^{T} P_{i-1} \varphi_{i}}{1+\varphi_{i}^{T} P_{i-1} \varphi_{i}}\right)
$$

To complete the proof, we must obtain
Bounds on $\sum_{i=0}^{n} \frac{\varphi_{i}^{T} P_{i-1} \varphi_{i}}{1+\varphi_{i}^{T} P_{i-1} \varphi_{i}} \quad$ We have by definition,

$$
\begin{aligned}
P_{i}^{-1} & =P_{i-1}^{-1}+\varphi_{i} \varphi_{i}^{T} \\
& =P_{i-1}^{-\frac{1}{2}}\left(I+\left(P_{i-1}^{\frac{1}{2}} \varphi_{i}\right)\left(P_{i-1}^{\frac{1}{2}} \varphi_{i}\right)^{T}\right) P_{i-1}^{-\frac{1}{2}}
\end{aligned}
$$

Let $|\cdot|$ denote the determinant of (\cdot). We have

$$
\left|P_{i}^{-1}\right|=\left|P_{i-1}^{-\frac{1}{2}}\right|\left|I+\left(P_{i-1}^{\frac{1}{2}} \varphi_{i}\right)\left(P_{i-1}^{\frac{1}{2}} \varphi_{i}\right)^{T}\right|\left|P_{i-1}^{-\frac{1}{2}}\right|
$$

One can compute this determinant as follows:

$$
\left|P_{i}\right|^{-1}=\left|P_{i-1}\right|^{-1}\left(1+\varphi_{i}^{T} P_{i-1} \varphi_{i}\right)
$$

Solving this equation gives the following formulae:

$$
\begin{aligned}
\varphi_{i}^{T} P_{i-1} \varphi_{i} & =\frac{\left|P_{i}\right|^{-1}-\left|P_{i-1}\right|^{-1}}{\left|P_{i-1}\right|^{-1}} \\
\frac{\varphi_{i}^{T} P_{i-1} \varphi_{i}}{1+\varphi_{i}^{T} P_{i-1} \varphi_{i}} & =\frac{\left|P_{i}\right|^{-1}-\left|P_{i-1}\right|^{-1}}{\left|P_{i}\right|^{-1}}
\end{aligned}
$$

The following calculation almost completes the proof of Lai's result:

$$
\sum_{i=0}^{n} \frac{\varphi_{i}^{T} P_{i-1} \varphi_{i}}{1+\varphi_{i}^{T} P_{i-1} \varphi_{i}}=\sum_{i=0}^{n} \frac{\left|P_{i}\right|^{-1}-\left|P_{i-1}\right|^{-1}}{\left|P_{i}\right|^{-1}} \leq \log \left(\frac{\left|P_{-1}\right|}{\left|P_{n}\right|}\right) .
$$

The last inequality follows from the bound $-x+1 \leq-\log (x), x>0$.
To bound this final term, observe that

$$
\left|P_{n}\right|^{-1}=\left|P_{n}^{-1}\right| \leq \operatorname{dim}\left(P_{n}\right) \lambda_{\max }\left(P_{n}^{-1}\right)
$$

