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Handout: Convergence of Least Squares

In this handout we consider the noisy linear system

yk+1 = ϕT
k θ◦ + vk+1. (1)

The least squares algorithm for estimating θ◦ is defined by the equation

θ̂k+1 =

(

k
∑

i=0

ϕiϕ
T
i

)−1( k
∑

i=0

ϕiyi+1

)

(2)

Substituting the expression for y, the parameter estimate is thus given by

θ̂k+1 = θ◦ +

(

k
∑

i=0

ϕiϕ
T
i

)−1( k
∑

i=0

ϕivi+1

)

This equation makes the parameter estimation error explicit. The main question is whether or not the
estimates converge, so that θ̂n → θ◦ as n → ∞. To ensure convergence, we must impose some conditions
on the disturbance sequence v, as the following example shows.

Example of bias Take the simple scalar model

yt+1 = θ◦yt + c1wt + wt+1

with θ◦ = 0, and w a wide sense white process. Then

θ̂k+1 =

(

1

k

k
∑

i=0

y2
i

)−1(

1

k

k
∑

i=0

yiyi+1

)

The process y is wide sense stationary with

Ry(0) = lim
1

N

N
∑

i=0

y2
i = E[(c1w0 + w1)

2] = σ2
w(c2

1 + 1)

Ry(1) = lim
1

N

N
∑

i=0

yiyi+1 = E[(c1w0 + w1)(c1w1 + w2)] = σ2
wc1

It follows that

lim
n→∞

θ̂n =
c1

1 + c2
1

,

and hence, the parameter estimates do not converge unless c1 = 0. This is precisely the case

yt+1 = θ◦yt + wt+1,

so the noise is wide sense white.



White noise The sequence v is called white if

(i) {v(0), v(1), . . .} are independent;

(ii) {v(0), v(1), . . .} have identical distributions;

(iii) The mean is zero: E[v(t)] = lim
N→∞

1

N

N
∑

k=1

v(k) = 0;

(iv) The variance is finite: σ2
v = E[v(t)2] = lim

N→∞

1

N

N
∑

k=1

v(k)2 < ∞;

(v) The fourth moment is also finite: E[v(t)4] = lim
N→∞

1

N

N
∑

k=1

v(k)4 < ∞.

White noise sequences satisfy the following important properties. Let zk = f(v(1), . . . , v(k), k) be a non-
anticipative function of the noise. We then have

(P1) If
∑

z2
k = ∞ then

lim
N→∞

(

N
∑

k=0

z2
k

)−1 N
∑

k=0

zkvk+1 = 0;

while if
∑

z2
k < ∞ then

lim
N→∞

N
∑

k=0

zkvk+1 exists as a finite number.

(P2) If |zk| ≤ z̄ for some constant z̄, and all k ≥ 0, then

N
∑

k=0

|zk|v
2
k+1 = O(

N
∑

k=0

|zk|)

The “big O” notation in (P2) means that
∑N

k=0
|zk|v

2
k+1

≤ K(
∑N

k=0
|zk|) for some K < ∞. A “little o”

notation is also commonly used: property (P1) is often written

N
∑

k=0

zkvk+1 = o(

N
∑

k=0

z2
k)

The proof of these results is beyond the scope of this course, though the proofs are not difficult after
ECE 434. For those of you with some probability background: the properties (P1) and (P2) follow from
the Martingale Convergence Theorem and Kronecker’s Lemma.



Convergence of Least Squares in White Noise

One of the most elegant bounds in system identification is due to Lai, 1982. The Recursive Least Squares
(RLS) algorithm satisfies the recursive equations:

θ̂n+1 = θ̂n +
Pn−1ϕnen+1

1 + ϕT
nPn−1ϕn

, Pn = Pn−1 −
Pn−1ϕnϕT

nPn−1

1 + ϕT
nPn−1ϕn

where en+1 = yn+1−θ̂T
n ϕn is the prediction error. The parameter estimation error is defined as θ̃n = θ◦−θ̂n.

Suppose that the disturbance v in (1) is a white noise sequence, and that for each n,
the noise variable vn is statistically independent of {φi, yi, vi, i ≤ n−1}. Then the RLS
algorithm satisfies

|θ̃n|
2 = O

( log λmax(P
−1
n−1

)

λmin(P
−1

n−1
)

)

n
∑

i=0

|ϕT
i θ̃i|

2

1 + ϕT
i Pi−1ϕi

= O
(

log λmax(P
−1
n )
)

, n ≥ 1.

If the regression sequence is weakly persistently exciting, so that

1

N

N
∑

1

ϕkϕ
T
k → Q > 0, N →∞,

it follows that from the first inequality that

|θ̃n|
2 ≤ Const.

log(n)

n
→ 0 as n →∞.

The second inequality is useful in bounding the prediction error ei+1 = ϕT
i θ̃i + vi+1.

A Lyapunov Recursion The proof of this result is based upon properties of white noise, and an
examination of the “Lyapunov function”

Qn = θ̃T
n P−1

n−1
θ̃n

Finding appropriate bounds on Qn will give the result, since |θ̃n|
2 ≤ Qn/λmin(P

−1
n−1

).
From the RLS recursions we have

θ̃n+1 =

(

I −
Pn−1ϕnϕT

n

1 + ϕT
nPn−1ϕn

)

θ̃n −
Pn−1ϕnvn+1

1 + φT
nPn−1ϕn

Substituting the recursion for Pn then gives

θ̃n+1 = PnP−1
n−1

θ̃n −
Pn−1ϕnvn+1

1 + ϕT
nPn−1ϕn



So, the recursion for Qn becomes

Qn+1 = θ̃T
n+1P

−1
n θ̃n+1 = θ̃T

n+1P
−1
n−1

PnP−1
n−1

θ̃n − 2θ̂nP−1
n−1

(

Pn−1ϕnvn+1

1 + ϕT
nPn−1θn

)

+v2
n+1

ϕT
nPn−1P

−1
n Pn−1ϕn

(1 + ϕT
nPn−1ϕn)2

The terms involving products of Pi can be calculated as follows:

P−1
n−1

PnP−1
n−1

= P−1
n−1

(

Pn−1 −
Pn−1ϕnϕT

nPn−1

1 + ϕT
nPn−1ϕn

)

P−1
n−1

= P−1
n−1

−
ϕnϕT

n

1 + ϕT
nPn−1ϕn

Pn−1P
−1
n Pn−1 = Pn−1(P

−1
n−1

+ ϕnϕT
n )Pn−1

= Pn−1 + Pn−1ϕnϕT
nPn−1

We then obtain the following recursive equation:

Qn+1 = Qn −
| θ̃T

n ϕn |
2

1 + ϕT
nPn−1ϕn

− 2
θ̃T
n ϕnvn+1

1 + ϕT
nPn−1ϕn

+v2
n+1

ϕT
nPn−1ϕn

1 + ϕT
nPn−1ϕn

Iterating this bound gives

Qn+1 = Q0 −
n
∑

i=0

| θ̃T
i ϕi |

2

1 + ϕT
i Pi−1ϕi

− 2
n
∑

i=0

θ̃T
i ϕivi+1

1 + ϕT
i Pi−1ϕi

+

n
∑

i=0

ϕT
i Pi−1ϕi

1 + ϕT
i Pi−1ϕi

v2
i+1

All of the terms on the right hand side are easily bounded using properties of white noise. We have

n
∑

i=0

θ̃T
i ϕivi+1

1 + ϕT
i Pi−1ϕi

= o

(

n
∑

i=0

| θ̃T
i ϕi |

2

(1 + ϕT
i Pi−1ϕi)2

)

n
∑

i=0

ϕT
i Pi−1ϕi

1 + ϕT
i Pi−1ϕi

v2
i+1 = O

(

n
∑

i=0

ϕT
i Pi−1ϕi

1 + ϕT
i Pi−1ϕi

)

where the first bound follows from (P1), and the second follows from (P2).
Combining these bounds finally gives

Qn+1 + (1 + o(1))

n
∑

i=0

| θ̃T
i ϕi |

2

1 + ϕT
i Pi−1ϕi

= Q0 + O

(

n
∑

i=0

ϕT
i Pi−1ϕi

1 + ϕT
i Pi−1ϕi

)

.



Hence both Qn+1 and

n
∑

i=0

|θ̃T
i ϕi|

2

1 + ϕT
i Pi−1ϕi

may be bounded by

O

(

n
∑

i=0

ϕT
i Pi−1ϕi

1 + ϕT
i Pi−1ϕi

)

To complete the proof, we must obtain

Bounds on
∑n

i=0

ϕT

i
Pi−1ϕi

1+ϕT

i
Pi−1ϕi

We have by definition,

P−1

i = P−1

i−1
+ ϕiϕ

T
i

= P
−

1

2

i−1
(I + (P

1

2

i−1
ϕi)(P

1

2

i−1
ϕi)

T )P
−

1

2

i−1

Let | · | denote the determinant of (·). We have

|P−1

i | = |P
−

1

2

i−1
| |I + (P

1

2

i−1
ϕi)(P

1

2

i−1
ϕi)

T | |P
−

1

2

i−1
|

One can compute this determinant as follows:

|Pi|
−1 = |Pi−1|

−1(1 + ϕT
i Pi−1ϕi)

Solving this equation gives the following formulae:

ϕT
i Pi−1ϕi =

|Pi|
−1 − |Pi−1|

−1

|Pi−1|−1

ϕT
i Pi−1ϕi

1 + ϕT
i Pi−1ϕi

=
|Pi|

−1 − |Pi−1|
−1

|Pi|−1

The following calculation almost completes the proof of Lai’s result:

n
∑

i=0

ϕT
i Pi−1ϕi

1 + ϕT
i Pi−1ϕi

=

n
∑

i=0

|Pi|
−1 − |Pi−1|

−1

|Pi|−1
≤ log

(

|P−1|

|Pn|

)

.

The last inequality follows from the bound −x + 1 ≤ − log(x), x > 0.
To bound this final term, observe that

|Pn|
−1 = |P−1

n | ≤ dim(Pn)λmax(P
−1
n )

ut


