
ECE 555 Second Mid-term Exam Spring, 2011

Good luck!

Full Name: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Problem 1: . . . . . / 15 points

Problem 2: . . . . . / 15 points

Problem 3: . . . . . / 20 points

Problem 4: . . . . . / 10 points

Problem 5: . . . . . / 40 points

TOTAL: . . . . . / 100 points

Notes : This is a take home exam.
It is due 5pm on Thursday, May 12, in 162 CSL

I will make the following times available for discussion:

◦ Tuesday, May 3rd after lecture

◦ Monday, May 9th, 3:30-5:00pm

◦ Wednesday, May 11th, 4:00-5:30pm

Of course, Dayu, Wei, and I will also await your questions via email.



Problem 1 Recall from the first midterm: If f is a real-valued function on X = 6+6+3 pts.

{0, 1, . . . , 100}, then the minimization of f can be expressed as a linear program. Namely,

min{π(f) : π(x) ≥ 0, x ∈ X, and
∑

π(x) = 1}

(a) Compute the dual functional,

ϕ(z) = min{π(f) + z
(
1−

∑
π(x)

)
: π(x) ≥ 0, x ∈ X}

(b) Solve the dual linear program, max
z∈R

ϕ(z)

(c) Compare your conclusions to the duality theory for MDPs derived in class



Problem 2 Recall the average-cost optimality equation (ACOE): 15 pts.

min
u

{
c(x, u) + Puh

∗ (x)
}

= h∗(x) + η∗ (1)

We view this as a fixed point equation in (h∗, η∗), and can apply standard methods
for solving such equations. However, recall that h∗ is not unique - we can always add
a constant to obtain a new solution to (1). To normalize h∗ we take h∗(x◦) = η∗,
where x◦ is some distinguished state. On denoting by T (h) the functional defined by
T (h)(x) = minu

{
c(x, u) +Puh (x)

}
−h(x◦), the ACOE becomes the fixed point equation

h∗ = T (h∗) (2)

Derive the Newton-Raphson algorithm to solve this fixed point equation, and compare
your algorithm to PIA.



Problem 3 One student this term voiced alarm: Average cost optimal control does not 5+5+10 pts.

take into account the variance of the cost. A convenient approach to address the impact
of risk is the risk-sensitive control problem — A version is illustrated in this problem.

Let c denote a cost function, and denote the partial sums by S0 := 0, and

Sn =
n−1∑
t=0

c(X(t), U(t)), n ≥ 1

For θ > 0 we have the Taylor-series approximation,

exp(θSn) ≈ 1 + θSn + 1
2
θ2(Sn)2

This motivates the risk-sensitive value function,

h∗(x) = min
∞∑
n=0

βnE
[
exp
(
θSn
)
| X(0) = x

]
where β ∈ (0, 1), θ > 0 (and typically small). The minimum is over all policies that are
adapted to X.

(a) Obtain a dynamic programming equation. That is, show that h∗ solves the fixed
point equation of the form,

h∗(x) = min
u
{exp(c(x, u)) + ?}

where the question-mark depends on x, u, and h∗.

For the remaining questions you may assume that the state space and action
space are finite.

(b) Provided h∗ is finite valued, the optimal policy is expressed as state feedback,
U(t) = φ∗(X(t)). Include a characterization of φ∗.

(c) Formulate a VIA algorithm, and derive conditions for convergence.



Problem 4 In this exercise you will see why the original SARSA paper was never 3+4+3 pts.

published, even though it is a very useful idea.
Suppose that we have an MDP model (you can assume finite state and action space),

and the input U is defined by a randomized, stationary policy φ. That is, we have for
any x, u, t,

P{U(t) = u | X t
0, X(t) = x} = φu(x)

A cost function c is given, and discount factor β ∈ (0, 1). The value function h for this
policy solves the fixed point equation,

h(x) = cφ(x) + βPφh (x) (∗)

As seen in class on April 28th, on writing Q(x, u) = c(x, u) + βPuh (x), and Qφ(x) =
E[Q(X,U) | X = x], this “Q-function” satisfies a similar equation,

Q(x, u) = c(x, u) + βPuQφ (x) (∗∗)

In the following steps you will transform (**) into (*).

(a) Explain why Φ(t) = (X(t), U(t)) is a Markov chain (under the assumptions of
this exercise).

(b) Obtain an expression for the conditional expectation E[Q(Φ(t + 1)) | Φ(t) = ξ]
for ξ = (x, u) satisfying φu(x) > 0.

(c) Based on your solution to (b), explain why (**) is simply (*) for the chain Φ.



Problem 5 In this exercise you will apply TD-learning in an attempt to solve a 50 pts.

particular consensus problem – for background, see the examples in: “Q-learning and
Pontryagin’s minimum principle”. Proc. of the IEEE Conf. on Dec. and Control, 2009.

Model: There are N > 1 “agents” represented by a scalar state process X i and scalar
input process U i. Each agent evolves according to a linear state space model,

X i(t+ 1) = αiX i(t) + (1− αi)U i(t) + σiW i(t+ 1), t ≥ 0.

where W i is an i.i.d. sequence with zero mean and unit variance. The processes {W i}
are mutually independent. Each agent has access only to its own state and action process
(X i, U i), and the average X̄(t) = N−1

∑
X i(t). Based on this information, each agent

wishes to optimize the average cost,

ηi = lim sup
n→∞

1

n

n∑
t=1

c(X i(t), X̄(t), U(t))

where c(x, x̄, u) = (x− x̄)2 + u2.
This is a decentralized optimal control problem that falls outside of the scope of this

course. Solutions have been obtained only in the mean field limit: See the lecture by
Peter Caines on April 26th, or the bibliography in the aforementioned paper.

In the mean-field limit, we view X̄ as a constant. In this case, optimization of ηi by
the ith agent amounts to scalar state feedback in the form U i(t) = −K∗i (X i(t) − X̄).
The relative value function is of the form h∗(x) = m∗(x− X̄)2, with m∗ > 0.

(a) Formulate a two dimensional basis for TD-learning, based on the intuition that
X̄(t) is “almost” static, and “almost” independent of any individual action.

(b) How might you construct a Q-learning algorithm with basis?
What would a basis look like, given your answer to (a)?

(c) Describe a TD-learning algorithm to obtain a feedback policy of the form U i(t) =
φi(X

i(t), X̄(t)). You will use policy improvement, and you must introduce ran-
domization. That is, if in the kth step of the algorithm you have a value function
approximation hk,i for the ith agent, then the policy improvement step would
give,

φk,i(x, x̄) = arg min
u
{c(x, x̄, u) + Pu (x, x̄)}

where Pu is a model for the ith agent, that pretends (x, x̄) is the Markov state
for a fully-observed MDP.

Note: If you like, you can instead formulate a Q-learning algorithm, or substitute
TD with SARSA.

(d) Try out the algorithm with N = 10. At the start of your experiment you should
choose the {αi, σi} at random, uniformly on [.1, .9] × [0, 2], but then keep them
fixed thereafter, even in multiple runs.

If you don’t like this problem, propose your own “Problem 5” that will
exercise the same concepts. PTO...



Discussion on Problem 5: This is designed to make you think about all of the
concepts you have learned in the course. You won’t use all of them, but try to bring in
as many ideas as possible.

The first tasks are analytical/philosophical, and the last task is numerical, but I hope
you bring in your own ideas. Please explore! Please provide discussion regarding your
conclusions!! In particular,

(i) Give me data: Plots, interpretations, histograms, anything you feel will illustrate
your findings.

(ii) Does your final policy φi(x, x̄) resemble what would be predicted from the infinite-
population model, with X̄ fixed? Does the value of (αi, σi) influence this com-
parison?

(iii) Formulate your own questions. Examples: Is exploration needed? Do you find
sensitivity of the final outcome to the initial policy?


