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The Linear Quadratic Regulator

10.1 Problem formulation

This chapter concerns optimal control of dynamical systems. Most of this develop-
ment concerns linear models with a particularly simple notion of optimality. However,
to understand the most basic concepts in optimal control, and not become lost in
complex notation, it is most convenient to consider first the general model given in
nonlinear state space form

ẋ = f(x, u, t), x(t0) = x0 (10.1)

The cost V of a particular control input u is defined by the following integral

V (u) =

∫ t1

t0

ℓ(x, u, τ) dτ +m(x(t1))

where

(a) t1 is the final time of the control problem.

(b) ℓ is a scalar-valued function of x, u, and t

(c) m is a function of x. It is called the terminal penalty function.

We assume that x0, t0, and t1 are known, fixed values, and x(t1) is free. Our goal is
to choose the control u[t0,t1] to minimize V .

A case which is typical in applications is where m and ℓ are quadratic functions
of their arguments. For an LTV model, the system description and cost are then given
by

ẋ = A(t)x+B(t)u, x(t0) = x0

V (u) =

∫ t1

t0

(xTQ(t)x+ uTR(t)u) dt + xT (t1)Mx(t1)
(10.2)

where M , Q and R are positive semidefinite matrix-valued functions of time. These
matrices can be chosen by the designer to obtain desirable closed loop response.
The minimization of the quadratic cost V for a linear system is known as the linear
quadratic regulator (LQR) problem.

We will study the LQR problem in detail, but first we develop some general
results for the nonlinear state space model (10.1).
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146 10. The Linear Quadratic Regulator

10.2 Hamilton-Jacobi-Bellman equations

The value function V ◦ = V ◦(x0, t0) is defined to be the minimum value of V over all
controls. This is a function of the two variables x and t which can be written explicitly
as

V ◦(x, t) = min
u[t,t1]

[∫ t1

t
ℓ(x(τ), u(τ), τ) dτ +m(x(t1))

]

Under very general conditions, the value function satisfies a partial differential equa-
tion known as the Hamilton-Jacobi-Bellman (HJB) equation. To derive this result,
let x and t be an arbitrary initial time and initial state, and let tm be an intermediate
time, t < tm < t1. Assuming that x(τ), t ≤ τ ≤ t1, is a solution to the state equations
with x(t) = x, we must have

V ◦(x, t) = min
u[t,t1]

[∫ tm

t
ℓ(x(τ), u(τ), τ) dτ +

∫ t1

tm

ℓ(x(τ), u(τ), τ) dτ +m(x(t1))
]

= min
u[t,tm]

[∫ tm

t
ℓ(x(τ), u(τ), τ) dτ + min

u[t,t1]

(∫ t1

tm

ℓ(x(τ), u(τ), τ) dτ +m(x(t1))

︸ ︷︷ ︸
V ◦(x(tm),tm)

)]

This gives the functional equation

V ◦(x, t) = min
u[t,tm]

[∫ tm

t
ℓ(x(τ), u(τ), τ) dτ + V ◦(x(tm), tm)

]
(10.3)

As a consequence, the optimal control over the whole interval has the property illus-
trated in Figure 10.1: If the optimal trajectory passes through the state xm at time
x(tm) using the control u◦, then the control u◦[tm,t1]

must be optimal for the system

starting at xm at time tm. If a better u∗ existed on [tm, t1], we would have chosen it.
This concept is called the principle of optimality .

x(t )

x(t)

x(t  ) = x  m m 1

Optimal trajectory starting from x at time t

Optimal trajectory starting from x    at time tm m

Fig. 10.1. If a better control existed on [tm, t1], we would have chosen it.

By letting tm approach t, we can derive a partial differential equation for the
value function V ◦. Let ∆t denote a small positive number, and define

tm = t+∆t

xm = x(tm) = x(t+∆t) = x(t) +∆x
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Assuming that the value function is sufficiently smooth, we may perform a Taylor
series expansion on V ◦ using the optimality equation (10.3) to obtain

V ◦(x, t) = min
u[t,tm]

{
ℓ(x(t), u(t), t)∆t + V ◦(x, t) +

∂V ◦

∂x
(x(t), t)∆x+

∂V ◦

∂t
(x(t), t)∆t

}

Dividing through by ∆t and recalling that x(t) = x then gives

0 = min
u[t,tm]

{
ℓ(x, u(t), t)

∆t

∆t
+
∂V ◦

∂x
(x, t)

∆x

∆t
+
∂V ◦

∂t
(x, t)

∆t

∆t

}

Letting ∆t→ 0, the ratio ∆x/∆t can be replaced by a derivative to give

0 = min
u

[
ℓ(x, u, t) +

∂V ◦

∂x
(x, t)ẋ(t)

]
+
∂V ◦

∂t

where
∂V ◦

∂x
=

[
∂V ◦

∂x1
. . .

∂V ◦

∂xn

]
= (∇xV

◦)T

Thus, we have obtained the following partial differential equation which the value
function must satisfy if it is smooth. The resulting equation (10.4) is the Hamilton
Jacobi Bellman (HJB) equation,

−∂V
◦

∂t
(x, t) = min

u

[
ℓ(x, u, t) +

∂V ◦

∂x
(x, t)f(x, u, t)

]
(10.4)

The terminal penalty term gives a boundary condition for the HJB equation

V ◦(x(t1), t1) = m(x(t1)).

The term in brackets in (10.4) is called the Hamiltonian, and is denoted H:

H(x, p, u, t) := ℓ(x, u, t) + pT f(x, u, t), (10.5)

where p = ∇xV
◦. We thus arrive at the following

Theorem 10.2.1. If the value function V ◦ has continuous partial derivatives, then
it satisfies the following partial differential equation

−∂V
◦

∂t
(x, t) = min

u
H(x,∇xV

◦ (x, t), u, t),

and the optimal control u◦(t) and corresponding state trajectory x◦(t) must satisfy

min
u
H(x◦(t),∇xV

◦ (x◦(t), t), u, t) = H(x◦(t),∇xV
◦ (x◦(t), t), u◦(t), t). (10.6)

⊓⊔

An important consequence of Theorem 10.2.1 is that the optimal control can be
written in state feedback form u◦(t) = ū(x◦(t), t), where the function ū is defined
through the minimization in (10.6).
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Example 10.2.1. Consider the simple integrator model, with the polynomial cost
criterion

ẋ = u V (u) =

∫ T

0
[u2 + x4] dt

Here we have f(x, u, t) = u, ℓ(x, u, t) = u2 + x4, and m(x, t) ≡ 0. The Hamiltonian is
thus

H(x, p, u, t) = pu+ u2 + x4,

and the HJB equation becomes

−∂V
◦

∂t
= min

u
{∂V

◦

∂x
u+ u2 + x4}.

Minimizing with respect to u gives

u◦ = −1
2

∂V ◦

∂x
(x, t),

which is a form of state feedback. The closed loop system has the appealing form

ẋ◦(t) = −1
2

∂V ◦

∂x
(x◦(t), t)

This equation shows that the control forces the state to move in the direction in which
the “cost to go” V ◦ decreases.

Substituting the formula for u◦ back into the HJB equation gives the PDE

−∂V
◦

∂t
(x, t) = −1

4

(
∂V ◦

∂x
(x, t)

)2

+ x4,

with the boundary condition V ◦(x, T ) = 0. This is as far as we can go, since we do
not have available methods to solve a PDE of this form. If a solution is required, it
may be found numerically. However, a simpler set of equations is obtained in the limit
as T →∞. This simpler problem is treated in Exercise 1 below. ⊓⊔

We now leave the general nonlinear model and concentrate on linear systems with
quadratic cost. We will return to the more general problem in Chapter 11.

10.3 A solution to the LQR problem

For the remainder of this chapter we consider the LQR problem whose system de-
scription and cost are given in (10.2). For this control problem, x0, t0 and t1 are
given, and x(t1) is free. To ensure that this problem has a solution we assume that
R is strictly positive definite (R > 0).

To begin, we now compute the optimal control u◦ by solving the HJB partial
differential equation. The Hamiltonian for this problem is given by

H(x, p, u, t) = ℓ+ pT f = xTQx+ uTRu+ pT (Ax+Bu)

To minimize H with respect to u we compute the derivative
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We now return to the general nonlinear state space model, with general cost criterion
of the form

ẋ(t) = f(x(t), u(t), t), x(t0) = x0 ∈ R
n

V (u) =

∫ t1

t0

ℓ(x(t), u(t), t) dt +m(x(t1))
(11.1)

We have already shown under certain conditions that if the input u minimizes V (u),
then a partial differential equation known as the HJB equation must be satisfied. One
consequence of this result is that the optimal control can be written in state feedback
form through the derivative of the value function V ◦. The biggest drawback to this
result is that one must solve a PDE which in general can be very complex. Even
for the relatively simple LQR problem, the solution of the HJB equations required
significant ingenuity.

The minimum principle is again a method for obtaining necessary conditions un-
der which a control u is optimal. This result is based upon the solution to an ordinary
differential equation in 2n dimensions. Because it is an ordinary differential equation,
in many instances it may be solved even though the HJB equation is intractable.
Unfortunately, this simplicity comes with a price. The solution u◦ to this ordinary
differential equation is in open-loop form, rather than state space form. The two
view points, both the Minimum Principle and the HJB equations, each have value in
nonlinear optimization, and neither approach can tell the whole story.

11.1 Minimum Principle and the HJB equations

There is no space in a book this size or a course at this level to give a complete
proof of the Minimum Principle. We can however give some heuristic arguments to
make the result seem plausible, and to gain some insight. We initially consider the
optimization problem (11.1) where x0, t0, t1 are fixed, and x(t1) is free. Our first
approach is through the HJB equation
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− ∂

∂t
V ◦(x, t) = min

u
(ℓ(x, u, t) +

∂V ◦

∂x
f(x, u, t))

u◦(t) = argmin
u

(ℓ(x, u, t) +
∂V ◦

∂x
f(x, u, t))

For x, t fixed, let ū(x, t) denote the value of u which attains the minimum above,
so that u◦ = ū(x◦(t), t). In the derivation below we assume that ū is a smooth function
of x. This assumption is false in many models, which indicates that another derivation
of the Minimum Principle which does not rely on the HJB equation is required to
create a general theory. With ū so defined, the HJB equation becomes

− ∂

∂t
V ◦(x, t) = ℓ(x, ū(x, t), t) +

∂V ◦

∂x
(x, t)f(x, ū(x, t), t).

Taking partial derivatives of both sides with respect to x gives the term ∂V ◦

∂x on both
sides of the resulting equation:

− ∂2

∂x∂t
V ◦(x, t) =

∂ℓ

∂x
(x, ū(x, t), t)

+
∂2V ◦

∂2x
(x, t)f(x, ū(x, t), t)

+
∂V ◦

∂x
(x, t)

∂f

∂x
(x, ū(x, t), t)

+
∂

∂u

(
ℓ+

∂V ◦

∂x
f

)
(x, ū(x, t), t)

︸ ︷︷ ︸
derivative vanishes at ū

∂ū(x, t)

∂x

As indicated above, since ū is the unconstrained minimum of H = ℓ + ∂V ◦

∂x f , the
partial derivative with respect to u must vanish.

This PDE holds for any state x and time t - they are treated as independent
variables. Consider now the optimal trajectory x◦(t) with optimal input u◦(t) =
ū(x◦(t), t). By a simple substitution we obtain

0 =
∂2

∂x∂t
V ◦(x◦(t), t) +

∂ℓ

∂x
(x◦(t), u◦(t), t)

+
∂2V ◦

∂x2
(x◦(t), t)f(x◦(t), u◦(t), t)

+
∂V ◦

∂x
(x◦(t), t)

∂f

∂x
(x◦(t), u◦(t), t). (11.2)

We can now convert this PDE into an ODE. The main trick is to define

p(t) :=
∂V ◦

∂x
(x◦(t), t)

This function is interpreted as the sensitivity of the cost with respect to current state,
and takes values in R

n. The derivative of p with respect to t can be computed as
follows:
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d

dt
p(t) =

∂2V ◦

∂x2
(x◦(t), t)ẋ◦(t) +

∂2V ◦

∂x∂t
(x◦(t), t)

=
∂2V ◦

∂x2
(x◦(t), t)f(x◦(t), u◦(t), t) +

∂2V ◦

∂x∂t
(x◦(t), t).

The two mixed partial terms in this equation are also included in (11.2). Combining
these two equations, we thereby eliminate these terms to obtain

0 =
d

dt
p(t) +

∂ℓ

∂x
(x◦(t), u◦(t), t)

+
∂V ◦

∂x
(x◦(t), t)

︸ ︷︷ ︸
pT (t)

∂f

∂x
(x◦(t), u◦(t), t). (11.3)

From the form of the Hamiltonian

H(x, p, u, t) = pT f(x, u, t) + ℓ(x, u, t),

the differential equation (11.3) may be written

ṗ(t) = −∇xH(x◦(t), p(t), u◦(t), t)

with the boundary condition

p(t1) = ∇xV
◦(x◦(t1), t1) = ∇xm(x◦(t1), t1).

This is not a proof, since for example we do not know if the value function V ◦

will be smooth. However, it does make the following result seem plausible. For a proof
see [8].

Theorem 11.1.1 (Minimum Principle). Suppose that t1 is fixed, x(t1) is free, and
suppose that u◦ is a solution to the optimal control problem (11.1). Then

(a) There exists a costate vector p(t) such that for t0 ≤ t ≤ t1,

u◦(t) = arg min
u

H(x◦(t), p(t), u, t)

(b) The pair (p, x◦) satisfy the 2-point boundary value problem:

ẋ◦(t) = ∇pH(x◦(t), p(t), u◦(t), t)
(
= f(x◦(t), u◦(t), t)

)

ṗ(t) = −∇xH(x◦(t), p(t), u◦(t), t)
(11.4)

with the two boundary conditions

x(t0) = x0; p(t1) = ∇xm(x(t1), t1).

⊓⊔
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11.2 Minimum Principle and Lagrange multipliers⋆

Optimal control involves a functional minimization which is similar in form to ordi-
nary optimization in R

m as described in a second year calculus course. For uncon-
strained optimization problems in R

m, the main idea is to look at the derivative of
the function V to be minimized, and find points in R

m at which the derivative is
zero, so that ∇V (x) = ϑ. Such an x is called a stationary point of the optimization
problem. By examining all stationary points of the function to be minimized one can
frequently find among these the optimal solution. The calculus of variations is the
infinite dimensional generalization of ordinary optimization in R

m. Conceptually, it
is no more complex than its finite dimensional counterpart.

In more advanced calculus courses, solutions to constrained optimization prob-
lems in R

m are addressed using Lagrange multipliers. Suppose for example that one
desires to minimize the function V (x) subject to the constraint g(x) = ϑ, x ∈ R

m,
where g : R

m → R
d. Consider the new cost function V̂ (x, p) = V (x) + pT g(x), where

p ∈ R
d. The vector p is known as a Lagrange multiplier. The point of extending

the state space in this way is that we can now solve an unconstrained optimization
problem, and very often this gives a solution to the constrained problem. Indeed, if
x0, p0 is a stationary point for V̂ then we must have

ϑ = ∇xV̂ (x0, p0) = ∇V (x0) +∇g(x0)p0 (11.5)

ϑ = ∇pV̂ (x0, p0) = g(x0) (11.6)

Equation (11.5) implies that the gradient of V is a linear combination of the gradients
of the components of g at x0, which is a necessary condition for optimality under very
general conditions. Figure 11.1 illustrates this with m = 2 and d = 1. Equation (11.6)
is simply a restatement of the constraint g = ϑ. This Lagrange multiplier approach
can also be generalized to infinite dimensional problems of the form (11.1), and this
then gives a direct derivation of the Minimum Principle which does not rely on the
HJB equations.

To generalize the Lagrange multiplier approach we must first generalize the con-
cept of a stationary point. Suppose that F is a functional on Dr[t0, t1]. That is, for
any function z ∈ Dr[t0, t1], F (z) is a real number. For any η ∈ Dr[t0, t1] we can define
a directional derivative as follows:

DηF (z) = lim
ǫ→0

F (z + ǫη)− F (z)

ǫ
,

whenever the limit exists. The function z(t, ǫ) = z(t) + ǫη(t) may be viewed as a
perturbation of z, as shown in Figure 11.2

We call z0 a stationary point of F if DηF (z0) = 0 for any η ∈ Dr[t0, t1]. If z0 is
a minimum of F , then a perturbation cannot decrease the cost, and hence we must
have for any η,

F (z0 + ǫη) ≥ F (z0), ǫ ∈ R.

From the definition of the derivative it then follows that an optimal solution must be
a stationary point, just as in the finite dimensional case!
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{x : V(x) = -1}

{x : V(x) = -2}

g(x  )

x

{x : V(x) = 0}

{x : V(x) = 1}

{x : g(x) = 0} 

1

1

x2

V(x )1

g(x  )2

V(x  )2

Fig. 11.1. An optimization problem on R2 with a single constraint g = 0. The point x1 is
not optimal: By moving to the right along the constraint set, the function V (x) will decrease.
The point x2 is a minimum of V subject to the constraint g(x) = 0 since at this point we
have V (x2) = −1. V can get no lower - for example, V (x) is never equal to −2 since the level
set {x : V (x) = −2} does not intersect the constraint set {x : g(x) = 0}. At x2, the gradient
of V and the gradient of g are parallel.

The problem at hand can be cast as a constrained functional minimization prob-
lem,

Minimize V (x, u) =

∫
ℓ dτ +m

Subject to ẋ− f = ϑ, x ∈ Dn[t0, t1], u ∈ Dm[t0, t1].

To obtain necessary conditions for optimality for constrained problems of this form
we can extend the Lagrange multiplier method. We outline this approach in five steps:

Step 1. Append the state equations to obtain the new cost functional

V̂ (x, u) =

∫ t1

t0

ℓ dt+m(x(t1)) +

∫ t1

t0

pT (f − ẋ) dt

The Lagrange multiplier vector p lies in Dn[t0, t1]. The purpose of this is to gain an
expression for the cost in which x and u can be varied independently.

Step 2. Use integration by parts to eliminate the derivative of x in the definition
of V̂ :

∫ t1

t0

pT ẋ dt =

∫ t1

t0

pTdx =
(
pTx

)∣∣t1
t0
−
∫ t1

t0

ṗTx dt
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z(t)

z(t,ε) = z(t) + ε η(t)

Fig. 11.2. A perturbation of the function z ∈ D[t0, t1].

Step 3. Recall the definition of the Hamiltonian,

H(x, p, u, t) := ℓ(x, u, t) + pT f(x, u, t).

Combining this with the formulas given in the previous steps gives

V̂ (x, u) =

∫ t1

t0

H(x, p, u, t) dt +

∫ t1

t0

ṗTx dt

+pT (t0)x(t0)− pT (t1)x(t1) +m(x(t1)) (11.7)

Step 4. Suppose that u◦ is an optimal control, and that x◦ is the correspond-
ing optimal state trajectory. The Lagrange multiplier theorem asserts that the pair
(x◦, u◦) is a stationary point of V̂ for some p◦. Perform perturbations of the optimal
control and state trajectories to form

u(t, δ) = u◦(t) + δψ(t) x(t, ǫ) = x◦(t) + ǫη(t) (11.8)

Since we are insisting that x(t0) = x0, we may assume that η(t0) = ϑ. Consider first
variations in ǫ, with δ set equal to zero. Letting V̂ (ǫ) = V̂ (x◦ + ǫη, u◦), we must have

d

dǫ
V̂ (ǫ) = 0.

Using (11.7) to compute the derivative gives

0 =

∫ t1

t0

∂

∂x
H(x◦, p, u◦, t)η(t) dt +

∫ t1

t0

ṗT η dt

−pT (t1)η(t1) + pT (t0)η(t0) +
∂

∂x
m(x◦(t1))η(t1). (11.9)

Similarly, by considering perturbations in u◦ we obtain for any ψ ∈ Dm[t0, t1],

ϑ =

∫ t1

t0

∂

∂u
H(x◦, p, u◦, t)ψ(t) dt (11.10)

This simpler expression is obtained because only the first term in (11.7) depends upon
u.
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Step 5. We can choose η(t) freely in (11.9). From this it follows that

∂H

∂x
+ ṗT = ϑT ⇒ ṗ = −∇xH

and since η(t0) = ϑ, and η(t1) is free,

−pT (t1) +
∂m

∂x
(t1) = ϑT ⇒ p(t1) = ∇xm(x(t1))

Similarly, by (11.10) we have

∂H

∂u
= ϑT ⇒ ∇uH = ϑ

In fact, if u is to be a minimum of V̂ , then in fact it must minimize H pointwise.
These final equations then give the Minimum Principle Theorem 11.1.1.

From this proof it is clear that many generalizations of the Minimum Principle
are possible. Suppose for instance that the final state x(t1) = x1 is specified. Then
the perturbation η will satisfy η(t1) = ϑ, and hence using (11.9), it is impossible
to find a boundary condition for p. None is needed in this case, since to solve the
2n-dimensional coupled state and costate equations, it is enough to know the initial
and final conditions of x◦.

11.3 The penalty approach⋆

A third heuristic approach to the Minimum Principle involves relaxing the hard con-
straint ẋ − f = ϑ, but instead impose a large, yet “soft” constraint by defining the
cost

V̂ (x, u) =

∫ t1

t0

ℓ(x(t), u(t), t) dt +
k

2

∫ t1

t0

|ẋ(t)− f(x(t), u(t), t)|2 dt +m(x(t1))

The constant k in this equation is assumed large, so that ẋ(t)− f(x(t), u(t), t) ≈ ϑ.

We assume that a pair (xk, uk) exists which minimizes V̂k. Letting (x◦, u◦) denote
a solution to the original optimization problem, we have by optimality,

V̂ (xk, uk) ≤ V̂ (x◦, u◦) = V ◦.

Assuming ℓ and m are positive, this gives the following uniform bound

∫ t1

t0

|ẋ(t)− f(x(t), u(t), t)|2 dt ≤ 2

k
V ◦

Hence, for large k, the pair (xk, uk) will indeed approximately satisfy the differential
equation ẋ = f .

If we perturb xk to form xk + ǫη and define V̂ (ǫ) = V̂ (xk + ǫη, uk) then we must
have d/dǫ V̂ (ǫ) = 0 when ǫ = 0. Using the definition of V̂ gives




