ECE 555 Control of Stochastic Systems Fall 2005

Handout: Reinforcement learning

In this handout we analyse reinforcement learning algorithms for Markov decision processes. The
reader is referred to E, Iﬁ], for a general background of the subject and to other references listed below
for further details. This handout is based on ﬂa]

Stochastic approximation In lecture on November 29th we considered the general stochastic
approximation recursion,

O(n+1) =0(k) + anlg(0(n)) + A(n+1)],  n>0, 0(0) € R% (1)

Here we provide a summary of the main results from ﬂa]
Associated with the recursion ([Il) are two O.D.E.s,

da(t) = gla(t) 2)
La(t) = gool(t)), (3)

where go : R — R% is the scaled function, lim 7 g(rz) = goo(z), z € RY. We assumed in lecture
rT—00

that this limit exists, along with some additional properties,

(A1) The function g is Lipschitz, and the limit g (z) exists for each z € R?. Furthermore, the
origin in R? is an asymptotically stable equilibrium for the O.D.E. @).

(A2) The sequence {A(n) : n > 1} is a martingale difference sequence with respect to F,, =
o(0(i), A(i),i < n). Moreover, for some 05 < oo and any initial condition (0) € RY,

EllA(n+DI? | F] <oA1+ 0(m)]*),  n=>o0.

The sequence {a,} is deterministic and is assumed to satisfy one of the following two assumptions.
Here TS stands for ‘tapering stepsize’ and BS for ‘bounded stepsize’.

(TS) The sequence {a,} satisfies 0 < a, <1, n >0, and
Zan = 00, Z ai < o0.
n n

(BS) The sequence {a,} is constant: a,, = a > 0 for all n.
Stability of the O.D.E. (Bl implies stability of the algorithm:
Theorem 1 Assume that (A1), (A2) hold. Then, for any initial condition 6(0) € R?,

(i) Under (TS), sup ||@(n)|| < oo a.s..

(ii) Under (BS) there exists ag > 0, by < 0o, such that for any fized a € (0, ag),

lim sup E[||8(n)]|%] < bo.

n—oo



For the TS model we have convergence when the O.D.E. () has a stable equilibrium point:

Theorem 2 Suppose that (A1), (A2), (TS) hold and that the O.D.E. [@) has a unique globally asymp-
totically stable equilibrium 6*. Then O(n) — 0* a.s. as n — oo for any initial condition 6(0) € RY.

We can also obtain bounds for the fixed stepsize algorithm. Let e denote the error sequence,

e(n) =[6(n) = 6%,  n=0.

Theorem 3 Assume that (A1), (A2) and (BS) hold, and suppose that (@) has a globally asymptotically
stable equilibrium point 0*. Then, for a € (0,aqg], and for every initial condition 6(0) € R?,

(i) For any e > 0, there exists by = b1(g) < oo such that

lim sup P(e(n) > ¢) < bia.

n—oo

(ii) If 0* is a globally exponentially asymptotically stable equilibrium for the O.D.E. (@), then
there exists bo < oo such that,

lim sup Ele(n)?] < boa.
Suppose that the increments of the model take the form,
g(0(n)) + A(n+1) = f(6(n),N(n+1)), n=0, (4)

where N is an i.i.d. sequence on R?. In this case, for the BS model, the stochastic process 0 is a (time-
homogeneous) Markov chain. Assumptions ([H) and () below are required to establish ¢-irreducibility:

There exists a n* € RY with f(0*,n*) =0, and a continuous density
p: R? — Ry satisfying p(n*) > 0 and

PIN(1) € A) > / p(2)dz, A€ B(RY);
A

The pair of matrices (A, B) is controllable with

0 0
A= %f(e*,n*) and B = a—ﬂf(@*,n*), (6)

Under Assumptions () and (@) there exists a neighborhood B(e) of * that is small in the sense that
there exists a probability measure v on R? and 6 > 0 such that

Pz, A):=P{O(r) € A|0(0) =z} > dv(A), x € B(e)
Stability of the O.D.E. () can be used to show that the resolvent satisfies,

R(x,B(e)) :== i 275 1pk(z, B(e)) >0, x€RY,
k=0

which is equivalent to -irreducibility E]



Theorem 4 Suppose that (A1), (A2), @3), and @) hold for the Markov model satisfying [{f)) with
a € (0,ag]. Then we have the following bounds:

(i) There exist positive-valued functions Ay and €g of a, and a constant Ay independent of a,
such that

Ple(n) > | 0(0) =z} < Ag(a) + Ar(||z]|* + 1) exp(—eo(a)n), n >0, a€ (0,a]
The functions satisfy Aop(a) < bia and ep(a) — 0 as a | 0.

(ii) If in addition the O.D.E. [@) is exponentially asymptotically stable, then the stronger bound
holds,

Ele(n)? | 6(0) = 2] < Bo(a) + Bi(||z[|* + 1) exp(—¢o(a)n), ~ n >0, a € (0,a),

where By(a) < bea, e9(a) — 0 as a | 0, and By is independent of a.
Markov decision processes We now review general theory for Markov decision processes. It
is assumed that the state process X = {X(¢) : t € Zy} takes values in a finite state space X =
{1,2,--- ,s}, and the control sequence U = {U(t) : t € Z,} takes values in a finite action space
U = {ug,--- ,u,}. The controlled transition probabilities are denoted P,(i,j) for i,57 € X,u € U. We
are most interested in stationary policies of the form U(t) = ¢(X(t)), where the feedback law ¢ is a
function ¢: X — U.

Let ¢ : X x U — R be the one-step cost function, and consider first the infinite horizon discounted
cost control problem of minimizing over all admissible U the total discounted cost

= E[Y (1 +7) X 0).U(1) [ X(0) =],
t=0

where v € (0,00) is the discount factor. The minimal value function is defined as
h* (i) = mUin h (i),

where the minimum is over all admissible control sequences U. The function h* satisfies the dynamic
programming equation

(L )h* (i) = mine(i.u) + 3 Puli 0" ()], i €X,

and the optimal control minimizing h is given as the stationary policy defined through the feedback
law ¢* given as any solution to

o™ (i) = arginin [c(z’,u) + Z Pu(i,j)h*(j)}, ieX.
J

The wvalue iteration algorithm is an iterative procedure to compute the minimal value function.
Given an initial function ho: X — Ry one obtains a sequence of functions {hy,} through the recursion

Pnia (i) = (1+7) " min [c(z',u) n Zpu(z',j)hn(j)}, ieX, n>0. (7)



This recursion is convergent for any initialization hy > 0.

The value iteration algorithm is initialized with a function hg: X — R. In contrast, the policy
iteration algorithm is initialized with a feedback law ¢°, and generates a sequence of feedback laws
{¢"™ : n > 0}. At the nth stage of the algorithm a feedback law ¢" is given, and the value function h,,
is computed. Interpreted as a column vector in R®, the vector h,, satisfies the equation

(1 +7) — Py)hy = cn (8)

where the s x s matrix P, is defined by P, (i,j) = Pyn(;)(4,7), 4,j € X, and the column vector ¢, is
given by ¢, (i) = c(i, " (7)), i € X. Given h,, the next feedback law ¢"*! is then computed via

@"*!(i) = arg min [c(i, u) + Z Puoli,hn(G)],  iex. 9)

Each step of the policy iteration algorithm is computationally intensive for large state spaces since
the computation of h,, requires the inversion of the s x s matrix (1 + )l — P, to solve ([{). For each
n, this can be solved using the ‘fixed-policy’ version of value iteration,

V(i) = A +9) P VN() +cn),  i€X, N>0, (10)
where Vj € R? is given as an initial condition. Then Vy — h,,, the solution to ([ ), at a geometric rate
as N — oo.

In the average cost optimization problem one seeks to minimize over all admissible U,

n—1

no (@) o= lim sup— 3 EL[e(X (£), U (1)) (11)

The policy iteration and value iteration algorithms to solve this optimization problem remain un-
changed with a few exceptions. One is that the constant v must be set equal to zero in equations ()
and ([[). Secondly, in the policy iteration algorithm the value function h,, is replaced by a solution
to Poisson’s equation

Pohy = hy — ¢ + 1, (12)

where 7, is the steady state cost under the policy ¢". The computation of h, and 7, again involves
matrix inversions via

(Il — Py +ed)=¢€, n,=mucn, ([ —P,+ee)h,=cp,

where e € R? is the column vector consisting of all ones, and the row vector m, is the invariant
probability for P,. The introduction of the outer product ensures that the matrix (I — P, + e€’) is
invertible, provided that the invariant probability m,, is unique.

Q-learning If we define Q-values via

Q*(i,u) = c(i,u) + Y Pu(i,i)h*(j),  i€Xuel, (13)
J
then h*(i) = min, Q*(i,u) and the matrix Q* satisfies

Q"(iu) = c(i,u) + (L+79)7" Y Pu(i, /) minQ*(jv),  i€XueU.
J



The matrix Q* can be computed using the equivalent formulation of value iteration,

Qni1(i,u) = c(i,u) + (1 +7)~ ZP (i,7) mann(j, )), 1eX,uelU,n>0, (14)

where Qg > 0 is arbitrary.

If transition probabilities are unknown so that value iteration is not directly applicable, one may
apply a stochastic approximation variant known as the Q-learning algorithm of Watkins ﬂﬁl, E] This
is defined through the recursion

Qn—l—l(i,u) = Qn(z,u) + an (1 +/7)_1 InvinQn(ETH-l(ivu)’U) + C(i,’LL) - Qn(Z,U)], i € qu € U7

where =,,11(7,u) is an independently simulated X-valued random variable with law P,(i,-).

Making the appropriate correspondences with the stochastic approximation theory surrounding
@), we have (n) = @, € R+ and the function g: R¥*+D — RsX("+1) is defined as follows.
Define F: R0 — RS>0+ a5 F(Q) = [Fiu(Q)]i.u via,

Fiu(Q) = (147)" ZP i, 7)) min Q(j,v) + c(i,u).

Then ¢(Q) = F(Q) — @ and the associated O.D.E. is
#Q=F(Q) —Q:=4(Q) (15)
The map F : RS> (+1) — Rsx("+1) i5 a contraction w.r.t. the max norm || - [|so,

IP@) = F@)e € 141)71Q = @l @1Q7 € R,

Consequently, one can show that with é =Q - Q"

A1l < =71 +7) 7 1Qlloo,

which establishes global asymptotic stability of its unique equilibrium point 6* ﬂ] Assumption (A1)
holds, with the (i, u)-th component of g (Q) given by

(147" Pu(i,j) min Q(j,v) — Q(i,u), i€ XueU.
J
This also is of the form g.(Q) = Fxo(Q) — @ where Fo(+) is an || - ||oo- contraction, and thus the

origin is asymptotically stable for the O.D.E. (H).
We conclude that Theorems [[HA hold for the Q-learning model.

Adaptive critic algorithm Next we consider the adaptive critic algorithm, which may be consid-
ered as the reinforcement learning analog of policy iteration. There are several variants of this, one
of which, taken from E], is as follows. The algorithm generates a sequence of approximations to h*
denoted {h,, : n > 0}, interpreted as a sequence of s-dimensional vectors. Simultaneously, it generates
a sequence of randomized policies denoted {¢"}.

At each time n the following random variables are constructed independently of the past:

(i) For each i € X, Q,(7) is a U-valued random variable independently simulated with law ¢"(4);



(ii) For each i € X, u € U, Z%(4,u) and =% (i,u) are independent X-valued random variables with
law P, (7, - ).

For 1 < ¢ < r we let e’ is the unit r-vector in the /-th coordinate direction. We let T'(-) denote the
projection onto the simplex {z € R, : >, x; < 1}.
For i € X the algorithm is defined by the pair of equations,

hn1()) = (@) + ba [(1+7) 7 e, 2 (0) + hn (S35, 2 (0)))] = hn(3)], (16)

o0 = T{8"(@) +an Y ([e€i, wo) + hn(Eh (o)) = [eliyue) + hn(Ehi,uw))] )b (17)

(=1

For each i, n, ¢"(i) = ¢"(i, - ) is a probability vector on U defined in terms of ngbn(z) = [(;AS"(Z, 1),... ,gz?"(i, )]
as follows,

P LY #0;
" (i, ug) {1—2#0¢”(z’,j) i—0

This is an example of a two time-scale algorithm: The sequences {a, }, {b,} are assumed to satisfy

as well as the usual conditions for vanishing gain algorithms,
Zan:an:oo, Z(ai+bi)<oo
n n n

To see why this is based on policy iteration, recall that policy iteration alternates between two
steps: One step solves the linear system of equation () to compute the fixed-policy value function
corresponding to the current policy. We have seen that solving () can be accomplished by performing
the fixed-policy version of value iteration given in ([[l). The first step ([[) in the above iteration is
indeed the ‘learning’ or ‘simulation-based stochastic approximation’ analog of this fixed-policy value
iteration. The second step in policy iteration updates the current policy by performing an appropriate
minimization. The second iteration () is a particular search algorithm for computing this minimum
over the simplex of probability measures on U.

The different choices of stepsize schedules for the two iterations (@), (I7) induces the ‘two time-
scale’ effect discussed in [fl]. Thus the first iteration sees the policy computed by the second as nearly
static, thus justifying viewing it as a fixed-policy iteration. In turn, the second sees the first as almost
equilibrated, justifying the search sheme for minimization over U.

The boundedness of {¢"} is guaranteed by the projection I'(+). For {h;}, the fact that b, = o(a,)
allows one to treat ¢"(i) as constant, say ¢(i) ﬂa] The appropriate O.D.E. then turns out to be

Ly =F(z) - z:=g(x) (18)

where F': R® — R* is defined by:

Fi(x)=(1+~v)" Z (i, up [Z Py, (i, j)z; + c(i,ug)|, ieX

¢ J



Once again, F(-) is an || - ||co-contraction and it follows that (I8 is globally asymptotically stable.
The limiting function go(z) is again of the form g (x) = Fuo(x) — x with Fo(x) defined so that its
i-th component is

L+ Oue) 3 Pl )
¢ J

We see that F is also a || - ||oo- contraction and the global asymptoyic stability of the origin for the
corresponding limiting O.D.E. follows ﬂ}

Average cost optimal control For the average cost control problem we impose the additional
restriction that the chain X has a wunique invariant probability measure under any stationary policy
so that the steady state cost ([Il) is independent of the initial condition.

For the average cost optimal control problem the @-learning algorithm is given by the recursion

Que+1(is4) = Qn(is u) + ap (min Qu(Z4 (i, ), v) + (i, u) = Quli u) = Qulio, uo) ),

where iy € X, ap € U are fixed a-priori. The appropriate O.D.E. now is ([[H) with F(-) redefined as
Fi,(Q) = Zj P,(i,7) min, Q(j,v) + c(i,u) — Q(ig, ug). The global asymptotic stability for the unique
equilibrium point for this O.D.E. has been established in [1]. Once again this fits our framework with
Joo () = Foo(x) — x for F defined the same way as F', except for the terms ¢(-, -) which are dropped.
We conclude that (A1) and (A2) are satisfied for this version of the @-learning algorithm.

In [§], three variants of the adaptive critic algorithm for the average cost problem are discussed,
differing only in the {¢"} iteration. The iteration for {h,} is common to all and is given by

hn-i—l(i) - hn(z) + bn[c(ia Qn(z)) + hn(Egz(L Qny (Z))) - hn(z) - hn(iO)L ieX

where ig € X is a prescribed fixed state. This leads to the O.D.E. ([I8) with F' redefined as

Fi(z) =Y é(i,ue) (Z P, (i) + c(i,ug)> —a,,  deX
4 J

The global asymptotic stability of the unique equilibrium point of this O.D.E. has been established in
B, E] Once more, this fits our framework with g (z) = Fx(z) — x for F, defined just like F', but
without the ¢(-,-) terms.
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