
ECE 555 Control of Stochastic Systems Fall 2005

Handout: Reinforcement learning

In this handout we analyse reinforcement learning algorithms for Markov decision processes. The
reader is referred to [2, 10] for a general background of the subject and to other references listed below
for further details. This handout is based on [5].

Stochastic approximation In lecture on November 29th we considered the general stochastic
approximation recursion,

θ(n+ 1) = θ(k) + an[g(θ(n)) + ∆(n+ 1)], n ≥ 0, θ(0) ∈ R
d. (1)

Here we provide a summary of the main results from [5].
Associated with the recursion (1) are two O.D.E.s,

d
dt
x(t) = g(x(t)) (2)

d
dt
x(t) = g∞(x(t)), (3)

where g∞ : R
d → R

d is the scaled function, lim
r→∞

r−1g(rx) = g∞(x), x ∈ R
d. We assumed in lecture

that this limit exists, along with some additional properties,

(A1) The function g is Lipschitz, and the limit g∞(x) exists for each x ∈ R
d. Furthermore, the

origin in R
d is an asymptotically stable equilibrium for the O.D.E. (3).

(A2) The sequence {∆(n) : n ≥ 1} is a martingale difference sequence with respect to Fn =
σ(θ(i),∆(i), i ≤ n). Moreover, for some σ2

∆ <∞ and any initial condition θ(0) ∈ R
d,

E[‖∆(n + 1)‖2 | Fn] ≤ σ2
∆(1 + ‖θ(n)‖2), n ≥ 0.

The sequence {an} is deterministic and is assumed to satisfy one of the following two assumptions.
Here TS stands for ‘tapering stepsize’ and BS for ‘bounded stepsize’.

(TS) The sequence {an} satisfies 0 < an ≤ 1, n ≥ 0, and

∑

n

an = ∞,
∑

n

a2
n <∞.

(BS) The sequence {an} is constant: an ≡ a > 0 for all n.

Stability of the O.D.E. (3) implies stability of the algorithm:

Theorem 1 Assume that (A1), (A2) hold. Then, for any initial condition θ(0) ∈ R
d,

(i) Under (TS), sup
n

‖θ(n)‖ <∞ a.s..

(ii) Under (BS) there exists a0 > 0, b0 <∞, such that for any fixed a ∈ (0, a0],

lim sup
n→∞

E[‖θ(n)‖2] ≤ b0.

⊓⊔

For the TS model we have convergence when the O.D.E. (2) has a stable equilibrium point:

Theorem 2 Suppose that (A1), (A2), (TS) hold and that the O.D.E. (2) has a unique globally asymp-
totically stable equilibrium θ∗. Then θ(n) → θ∗ a.s. as n→ ∞ for any initial condition θ(0) ∈ R

d.

We can also obtain bounds for the fixed stepsize algorithm. Let e denote the error sequence,

e(n) = ‖θ(n) − θ∗‖, n ≥ 0.

Theorem 3 Assume that (A1), (A2) and (BS) hold, and suppose that (2) has a globally asymptotically
stable equilibrium point θ∗. Then, for a ∈ (0, a0], and for every initial condition θ(0) ∈ R

d,

(i) For any ε > 0, there exists b1 = b1(ε) <∞ such that

lim sup
n→∞

P(e(n) ≥ ε) ≤ b1a.

(ii) If θ∗ is a globally exponentially asymptotically stable equilibrium for the O.D.E. (2), then
there exists b2 <∞ such that,

lim sup
n→∞

E[e(n)2] ≤ b2a.

⊓⊔

Suppose that the increments of the model take the form,

g(θ(n)) + ∆(n+ 1) = f(θ(n), N(n+ 1)), n ≥ 0, (4)

where N is an i.i.d. sequence on R
q. In this case, for the BS model, the stochastic process θ is a (time-

homogeneous) Markov chain. Assumptions (5) and (6) below are required to establish ψ-irreducibility:

There exists a n∗ ∈ R
q with f(θ∗, n∗) = 0, and a continuous density

p : R
q → R+ satisfying p(n∗) > 0 and

P(N(1) ∈ A) ≥

∫

A

p(z)dz, A ∈ B(Rq);
(5)

The pair of matrices (A,B) is controllable with

A =
∂

∂x
f(θ∗, n∗) and B =

∂

∂n
f(θ∗, n∗),

(6)

Under Assumptions (5) and (6) there exists a neighborhood B(ǫ) of θ∗ that is small in the sense that
there exists a probability measure ν on R

d and δ > 0 such that

P d(x,A) := P{θ(r) ∈ A | θ(0) = x} ≥ δν(A), x ∈ B(ǫ)

Stability of the O.D.E. (2) can be used to show that the resolvent satisfies,

R(x,B(ǫ)) :=

∞∑

k=0

2−k−1P k(x,B(ǫ)) > 0, x ∈ R
d,

which is equivalent to ψ-irreducibility [9].

Theorem 4 Suppose that (A1), (A2), (5), and (6) hold for the Markov model satisfying (4) with
a ∈ (0, a0]. Then we have the following bounds:

(i) There exist positive-valued functions A0 and ε0 of a, and a constant A1 independent of a,
such that

P{e(n) ≥ ε | θ(0) = x} ≤ A0(a) +A1(‖x‖
2 + 1) exp(−ε0(a)n), n ≥ 0, a ∈ (0, a0].

The functions satisfy A0(a) ≤ b1a and ε0(a) → 0 as a ↓ 0.

(ii) If in addition the O.D.E. (2) is exponentially asymptotically stable, then the stronger bound
holds,

E[e(n)2 | θ(0) = x] ≤ B0(a) +B1(‖x‖
2 + 1) exp(−ǫ0(a)n), n ≥ 0, a ∈ (0, a0],

where B0(a) ≤ b2a, ε0(a) → 0 as a ↓ 0, and B1 is independent of a.

Markov decision processes We now review general theory for Markov decision processes. It
is assumed that the state process X = {X(t) : t ∈ Z+} takes values in a finite state space X =
{1, 2, · · · , s}, and the control sequence U = {U(t) : t ∈ Z+} takes values in a finite action space
U = {u0, · · · , ur}. The controlled transition probabilities are denoted Pu(i, j) for i, j ∈ X, u ∈ U. We
are most interested in stationary policies of the form U(t) = φ(X(t)), where the feedback law φ is a
function φ : X → U.

Let c : X ×U → R be the one-step cost function, and consider first the infinite horizon discounted
cost control problem of minimizing over all admissible U the total discounted cost

hU (i) = E

[∞∑

t=0

(1 + γ)−t−1c(X(t), U(t)) | X(0) = i
]
,

where γ ∈ (0,∞) is the discount factor. The minimal value function is defined as

h∗(i) = min
U
hU (i),

where the minimum is over all admissible control sequences U . The function h∗ satisfies the dynamic
programming equation

(1 + γ)h∗(i) = min
u

[
c(i, u) +

∑

j

Pu(i, j)h∗(j)
]
, i ∈ X,

and the optimal control minimizing h is given as the stationary policy defined through the feedback
law φ∗ given as any solution to

φ∗(i) := arg min
u

[
c(i, u) +

∑

j

Pu(i, j)h∗(j)
]
, i ∈ X.

The value iteration algorithm is an iterative procedure to compute the minimal value function.
Given an initial function h0 : X → R+ one obtains a sequence of functions {hn} through the recursion

hn+1(i) = (1 + γ)−1 min
u

[
c(i, u) +

∑

j

Pu(i, j)hn(j)
]
, i ∈ X, n ≥ 0. (7)

This recursion is convergent for any initialization h0 ≥ 0.
The value iteration algorithm is initialized with a function h0 : X → R+. In contrast, the policy

iteration algorithm is initialized with a feedback law φ0, and generates a sequence of feedback laws
{φn : n ≥ 0}. At the nth stage of the algorithm a feedback law φn is given, and the value function hn

is computed. Interpreted as a column vector in R
s, the vector hn satisfies the equation

((1 + γ)I − Pn)hn = cn (8)

where the s × s matrix Pn is defined by Pn(i, j) = Pφn(i)(i, j), i, j ∈ X, and the column vector cn is
given by cn(i) = c(i, φn(i)), i ∈ X. Given hn, the next feedback law φn+1 is then computed via

φn+1(i) = arg min
u

[
c(i, u) +

∑

j

Pu(i, j)hn(j)
]
, i ∈ X. (9)

Each step of the policy iteration algorithm is computationally intensive for large state spaces since
the computation of hn requires the inversion of the s× s matrix (1 + γ)I − Pn to solve (8). For each
n, this can be solved using the ‘fixed-policy’ version of value iteration,

VN+1(i) = (1 + γ)−1[PnVN (i) + cn], i ∈ X, N ≥ 0, (10)

where V0 ∈ R
s is given as an initial condition. Then VN → hn, the solution to (8), at a geometric rate

as N → ∞.

In the average cost optimization problem one seeks to minimize over all admissible U ,

ηU (x) := lim sup
n→∞

1

n

n−1∑

t=0

Ex[c(X(t), U(t))]. (11)

The policy iteration and value iteration algorithms to solve this optimization problem remain un-
changed with a few exceptions. One is that the constant γ must be set equal to zero in equations (7)
and (10). Secondly, in the policy iteration algorithm the value function hn is replaced by a solution
to Poisson’s equation

Pnhn = hn − cn + ηn, (12)

where ηn is the steady state cost under the policy φn. The computation of hn and ηn again involves
matrix inversions via

πn(I − Pn + ee′) = e′, ηn = πncn, (I − Pn + ee′)hn = cn,

where e ∈ R
s is the column vector consisting of all ones, and the row vector πn is the invariant

probability for Pn. The introduction of the outer product ensures that the matrix (I − Pn + ee′) is
invertible, provided that the invariant probability πn is unique.

Q-learning If we define Q-values via

Q∗(i, u) = c(i, u) +
∑

j

Pu(i, j)h∗(j), i ∈ X, u ∈ U, (13)

then h∗(i) = minuQ
∗(i, u) and the matrix Q∗ satisfies

Q∗(i, u) = c(i, u) + (1 + γ)−1
∑

j

Pu(i, j)min
v
Q∗(j, v), i ∈ X, u ∈ U.

The matrix Q∗ can be computed using the equivalent formulation of value iteration,

Qn+1(i, u) = c(i, u) + (1 + γ)−1
∑

j

Pu(i, j)
(
min

v
Qn(j, v)

)
, i ∈ X, u ∈ U, n ≥ 0, (14)

where Q0 ≥ 0 is arbitrary.
If transition probabilities are unknown so that value iteration is not directly applicable, one may

apply a stochastic approximation variant known as the Q-learning algorithm of Watkins [11, 12]. This
is defined through the recursion

Qn+1(i, u) = Qn(i, u) + an

[
(1 + γ)−1 min

v
Qn(Ξn+1(i, u), v) + c(i, u) −Qn(i, u)

]
, i ∈ X, u ∈ U,

where Ξn+1(i, u) is an independently simulated X-valued random variable with law Pu(i, ·).
Making the appropriate correspondences with the stochastic approximation theory surrounding

(1), we have θ(n) = Qn ∈ R
s×(r+1) and the function g : R

s×(r+1) → R
s×(r+1) is defined as follows.

Define F : R
s×(r+1) → R

s×(r+1) as F (Q) = [Fiu(Q)]i,u via,

Fiu(Q) = (1 + γ)−1
∑

j

Pu(i, j)min
v
Q(j, v) + c(i, u).

Then g(Q) = F (Q) −Q and the associated O.D.E. is

d
dt
Q = F (Q) −Q := g(Q). (15)

The map F : R
s×(r+1) → R

s×(r+1) is a contraction w.r.t. the max norm ‖ · ‖∞,

‖F (Q1) − F (Q2)‖∞ ≤ (1 + γ)−1‖Q1 −Q2‖∞, Q1, Q2 ∈ R
s×(r+1).

Consequently, one can show that with Q̃ = Q−Q∗,

d
dt
‖Q̃‖∞ ≤ −γ(1 + γ)−1‖Q̃‖∞,

which establishes global asymptotic stability of its unique equilibrium point θ∗ [7]. Assumption (A1)
holds, with the (i, u)-th component of g∞(Q) given by

(1 + γ)−1
∑

j

Pu(i, j)min
v
Q(j, v) −Q(i, u), i ∈ X, u ∈ U.

This also is of the form g∞(Q) = F∞(Q) − Q where F∞(·) is an ‖ · ‖∞- contraction, and thus the
origin is asymptotically stable for the O.D.E. (3).

We conclude that Theorems 1–4 hold for the Q-learning model.

Adaptive critic algorithm Next we consider the adaptive critic algorithm, which may be consid-
ered as the reinforcement learning analog of policy iteration. There are several variants of this, one
of which, taken from [8], is as follows. The algorithm generates a sequence of approximations to h∗

denoted {hn : n ≥ 0}, interpreted as a sequence of s-dimensional vectors. Simultaneously, it generates
a sequence of randomized policies denoted {φn}.

At each time n the following random variables are constructed independently of the past:

(i) For each i ∈ X, Ωn(i) is a U-valued random variable independently simulated with law φn(i);

(ii) For each i ∈ X, u ∈ U, Ξa
n(i, u) and Ξb

n(i, u) are independent X-valued random variables with
law Pu(i, ·).

For 1 ≤ ℓ ≤ r we let e
ℓ is the unit r-vector in the ℓ-th coordinate direction. We let Γ(·) denote the

projection onto the simplex {x ∈ R
r
+ :

∑
i xi ≤ 1}.

For i ∈ X the algorithm is defined by the pair of equations,

hn+1(i) = hn(i) + bn
[
(1 + γ)−1[c(i,Ωn(i)) + hn(Ξa

n(i,Ωn(i)))] − hn(i)
]
, (16)

φ̂n+1(i) = Γ
{
φ̂n(i) + an

r∑

ℓ=1

(
[c(i, u0) + hn(Ξb

n(i, u0))] − [c(i, uℓ) + hn(Ξb
n(i, uℓ))]

)
e
ℓ
}
. (17)

For each i, n, φn(i) = φn(i, ·) is a probability vector on U defined in terms of φ̂n(i) = [φ̂n(i, 1), . . . , φ̂n(i, r)]
as follows,

φn(i, uℓ) =

{
φ̂n(i, ℓ) ℓ 6= 0;

1 −
∑

j 6=0 φ̂
n(i, j) ℓ = 0.

This is an example of a two time-scale algorithm: The sequences {an}, {bn} are assumed to satisfy

lim
n→∞

an

bn
= 0,

as well as the usual conditions for vanishing gain algorithms,

∑

n

an =
∑

n

bn = ∞,
∑

n

(a2
n + b2n) <∞.

To see why this is based on policy iteration, recall that policy iteration alternates between two
steps: One step solves the linear system of equation (8) to compute the fixed-policy value function
corresponding to the current policy. We have seen that solving (8) can be accomplished by performing
the fixed-policy version of value iteration given in (10). The first step (16) in the above iteration is
indeed the ‘learning’ or ‘simulation-based stochastic approximation’ analog of this fixed-policy value
iteration. The second step in policy iteration updates the current policy by performing an appropriate
minimization. The second iteration (17) is a particular search algorithm for computing this minimum
over the simplex of probability measures on U.

The different choices of stepsize schedules for the two iterations (16), (17) induces the ‘two time-
scale’ effect discussed in [6]. Thus the first iteration sees the policy computed by the second as nearly
static, thus justifying viewing it as a fixed-policy iteration. In turn, the second sees the first as almost
equilibrated, justifying the search sheme for minimization over U.

The boundedness of {φ̂n} is guaranteed by the projection Γ(·). For {hn}, the fact that bn = o(an)
allows one to treat φ̂n(i) as constant, say φ̄(i) [8]. The appropriate O.D.E. then turns out to be

d
dt
x = F (x) − x := g(x) (18)

where F : R
s → R

s is defined by:

Fi(x) = (1 + γ)−1
∑

ℓ

φ̄(i, uℓ)
[∑

j

Puℓ
(i, j)xj + c(i, uℓ)

]
, i ∈ X.

Once again, F (·) is an ‖ · ‖∞-contraction and it follows that (18) is globally asymptotically stable.
The limiting function g∞(x) is again of the form g∞(x) = F∞(x) − x with F∞(x) defined so that its
i-th component is

(1 + γ)−1
∑

ℓ

φ̄(i, uℓ)
∑

j

Puℓ
(i, j)xj .

We see that F∞ is also a ‖ · ‖∞- contraction and the global asymptoyic stability of the origin for the
corresponding limiting O.D.E. follows [7].

Average cost optimal control For the average cost control problem we impose the additional
restriction that the chain X has a unique invariant probability measure under any stationary policy
so that the steady state cost (11) is independent of the initial condition.

For the average cost optimal control problem the Q-learning algorithm is given by the recursion

Qn+1(i, u) = Qn(i, u) + an

(
min

v
Qn(Ξa

n(i, u), v) + c(i, u) −Qn(i, u) −Qn(i0, u0)
)
,

where i0 ∈ X, a0 ∈ U are fixed a-priori. The appropriate O.D.E. now is (15) with F (·) redefined as
Fiu(Q) =

∑
j Pu(i, j)minv Q(j, v) + c(i, u) −Q(i0, u0). The global asymptotic stability for the unique

equilibrium point for this O.D.E. has been established in [1]. Once again this fits our framework with
g∞(x) = F∞(x)−x for F∞ defined the same way as F , except for the terms c(·, ·) which are dropped.
We conclude that (A1) and (A2) are satisfied for this version of the Q-learning algorithm.

In [8], three variants of the adaptive critic algorithm for the average cost problem are discussed,
differing only in the {φ̂n} iteration. The iteration for {hn} is common to all and is given by

hn+1(i) = hn(i) + bn[c(i,Ωn(i)) + hn(Ξa
n(i,Ωn, (i))) − hn(i) − hn(i0)], i ∈ X

where i0 ∈ X is a prescribed fixed state. This leads to the O.D.E. (18) with F redefined as

Fi(x) =
∑

ℓ

φ̄(i, uℓ)
(∑

j

puℓ
(i, j)xj + c(i, uℓ)

)
− xi0, i ∈ X.

The global asymptotic stability of the unique equilibrium point of this O.D.E. has been established in
[3, 4]. Once more, this fits our framework with g∞(x) = F∞(x) − x for F∞ defined just like F , but
without the c(·, ·) terms.

References

[1] J. Abounadi, D. Bertsekas, and V. S. Borkar. Learning algorithms for Markov decision processes
with average cost. SIAM J. Control Optim., 40(3):681–698 (electronic), 2001.

[2] D.P. Bertsekas and J. Tsitsiklis. Neuro-Dynamic Programming. Atena Scientific, Cambridge,
Mass, 1996.

[3] V. S. Borkar. Recursive self-tuning control of finite Markov chains. Appl. Math. (Warsaw),
24(2):169–188, 1996.

[4] V. S. Borkar. Correction to: “Recursive self-tuning control of finite Markov chains”. Appl. Math.
(Warsaw), 24(3):355, 1997.

[5] V. S. Borkar and S. P. Meyn. The O.D.E. method for convergence of stochastic approximation
and reinforcement learning. SIAM J. Control Optim., 38(2):447–469, 2000. (also presented at the
IEEE CDC, December, 1998).

[6] Vivek S. Borkar. Stochastic approximation with two time scales. Systems Control Lett., 29(5):291–
294, 1997.

[7] Vivek S. Borkar and K. Soumyanath. An analog scheme for fixed point computation. I. Theory.
IEEE Trans. Circuits Systems I Fund. Theory Appl., 44(4):351–355, 1997.

[8] Vijaymohan R. Konda and Vivek S. Borkar. Actor-critic-type learning algorithms for Markov
decision processes. SIAM J. Control Optim., 38(1):94–123 (electronic), 1999.

[9] S. P. Meyn and R. L. Tweedie. Markov Chains and Stochastic Stability. Springer-Verlag, London,
1993. online: http://black.csl.uiuc.edu/~meyn/pages/book.html.

[10] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT Press
(and on-line, http://www.cs.ualberta.ca/%7Esutton/book/ebook/the-book.html), 1998.

[11] J.N. Tsitsiklis. Asynchronous stochastic approximation and Q-learning. Machine Learning,
16:185–202, 1994.

[12] Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine Learning, 8(3-4):279–292,
1992.

