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1 Equilibrium equations

The focus of this section is representation theory for equilibrium equations. Based on these results
we obtain criteria for existence and uniqueness of solutions, as well as performance bounds. For
simplicity we restrict to a countable state space.

Recall that a probability measure is called invariant if it satisfies the invariance equation,
∑

y∈X

π(x)D(x, y) = 0, x ∈ X, (1)

We fix a functionc : X → R with steady state meanη = π(c), and denote the centered function
by c̃ = c − η. Poisson’s equation can be expressed,

Dh = −c̃ (2)

The functionc is called theforcing function, and a solutionh : X → R is known as arelative value
function. Poisson’s equation can be regarded as a dynamic programming equation.

We also consider the discounted cost,

hγ(x) =

∞∑

t=0

(1 + γ)−t−1
E[c(X(t)) | X(0) = x]

It satisfies the dynamic programming equation,

Dhγ = −c + γhγ (3)

We will see that, under very general conditions, thatγhγ approximatesη, and hencehγ almost
solves Poisson’s equation whenγ ∼ 0:

h(x) = lim
γ↓0

[hγ(x) − hγ(x∗)] (4)

π(c) = lim
r→∞

1

r

r−1∑

t=0

Ex

[
c(X(t))

]
= lim

γ↓0
γhγ(x), x ∈ X (5)

wherex∗ is some fixed state.

1.1 Representations

Solving either equation (1) or (2) amounts to a form of inversion, but there are two difficulties. One
is that the matrices to be inverted may not be finite dimensional. The other is that these matrices
arenever invertable! For example, to solve Poisson’s equation (2) it appears that we must invert
D. However, the functionf which is identically equal to one satisfiesDf ≡ 0. This means that
the null-space ofD is non-trivial, which rules out invertibility.

On iterating the formulaPh = h − c̃ we obtain the sequence of identities,

P 2h = h − c̃ − P c̃ =⇒ P 3h = h − c̃ − P c̃ − P 2c̃ =⇒ · · · .

Consequently, one might expect a solution to take the form,
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h =
∞∑

i=0

P ic̃. (6)

When the sum converges absolutely, then this function does satisfy Poisson’s equation (2).
A representation which is more generally valid is defined by arandom sum. Define the first

entrance time and first return time to a statex∗ ∈ X by, respectively,

σx∗ = min(t ≥ 0 : X(t) = x∗) τx∗ = min(t ≥ 1 : X(t) = x∗) (7)

Proposition1.1(i) is contained in [2, Theorem 10.0.1], and (ii) is explained in Section 17.4 of [2].
It is proven in a special case in Proposition1.3.

Proposition 1.1. Letx∗ ∈ X be a given state satisfyingEx∗ [τx∗ ] < ∞. Then,

(i) The probability distribution defined below is invariant:

π(x) :=
(
Ex∗

[
τx∗

])−1
Ex∗

[τx∗−1∑

t=0

1(X(t) = x)
]
, x ∈ X. (8)

(ii) With π defined in (i), suppose thatc : X → R is a function satisfyingπ(|c|) < ∞. Then,
the function defined below is finite-valued onXπ := the support ofπ,

h(x) = Ex

[τx∗−1∑

t=0

c̃(X(t))
]

= Ex

[σx∗∑

t=0

c̃(X(t))
]
− c̃(x∗), x ∈ X. (9)

Moreover,h solves Poisson’s equation onXπ.
⊓⊔

The formulae forπ andh given in Proposition1.1 are perhaps the most commonly known
representations. In this section we develop operator-theoretic representations that are truly based
on matrix inversion. These representations help to simplify the stability theory that follows, and
they also extend most naturally to general state-space Markov chains, and processes in continuous
time.

The operator-thoretic representations ofπ andh are obtained under the followingminoriza-
tion condition: Suppose thats : X → R+ is a given function, andν is a probability onX such that

P (x, y) ≥ s(x)ν(y) x, y ∈ X. (10)

The functions and probability measureν are each calledsmallunder this condition. A setS ⊂ X

is called small if, for someε > 0, the functions = ε1S is a small function.
For example, ifν denotes the probability onX which is concentrated at a singletonx∗ ∈ X,

ands denotes the function onX given bys(x) := P (x, x∗), x ∈ X, then we do have the desired
lower bound,

P (x, y) ≥ P (x, y)1x∗(y) = s(x)ν(y) x, y ∈ X.

The inequality (10) is a matrix inequality that can be written compactly as,
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P ≥ s ⊗ ν (11)

whereP is viewed as a matrix, and the right hand side is the outer product of the column vectors,
and the row vectorν. The bound (11) will be relaxed in Section2.

We now give a roadmap for solving the invariance equation (1). Suppose that we already have
an invariant measureπ, so that

πP = π.

Then, on subtractings ⊗ ν we obtain,

π(P − s ⊗ ν) = πP − π[s ⊗ ν] = π − δν,

whereδ = π(s). Rearranging gives,

π[I − (P − s ⊗ ν)] = δν. (12)

We can now attempt an inversion. The point is, the operatorI − P is not invertible, but by
subtracting the outer products ⊗ ν there is some hope in constructing an inverse. Define the
potential matrixas

G =
∞∑

n=0

(P − s ⊗ ν)n . (13)

Under certain conditions we do haveG = [I − (P − s ⊗ ν)]−1, and hence from (12) we obtain
the representation ofπ,

π = δ[νG]. (14)

We can also attempt the ‘forward direction’ to constructπ: Given a pairs, ν satisfying the
lower bound (11), wedefineµ :=νG. We must then answer two questions: (i) when isµ invariant?
(ii) when isµ(X) < ∞? If both are affirmative, then we do have an invariant measure, given by

π(x) =
µ(x)

µ(X)
, x ∈ X.

We show in Proposition1.2 that µ always exists as a finite-valued measure onX, and that it is
alwayssubinvariant,

µ(y) ≥
∑

x∈X

µ(x)P (x, y), y ∈ X.

Invariance and finiteness both require some form ofstability for the process.

Proposition 1.2. For any pair(s, ν) satisfying(11), the measureµ = νG is subinvariant. Writ-
ing p(s,ν) = νGs, we have

(i) Gs (x) ≤ 1 for eachx, and hencep(s,ν) ≤ 1;

(ii) µ is invariant if and only ifp(s,ν) = 1.

(iii) µ is finite if and only ifνG (X) < ∞.
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Proof. ForN ≥ 0, definegN : X → R+ by

gN =

N∑

n=0

(P − s ⊗ ν)ns.

We show by induction thatgN (x) ≤ 1 for everyx ∈ X andN ≥ 0. This will establish (i) since
gN ↑ Gs, asN ↑ ∞.

For eachx we haveg0(x) = s(x) = s(x)ν(X) ≤ P (x,X) = 1, which verifies the induction
hypothesis whenN = 0. If the induction hypothesis is true for a givenN ≥ 0, then

gN+1(x) = (P − s ⊗ ν)gN (x) + s(x)

≤ (P − s ⊗ ν)1(x) + s(x)

= [P (x,X) − s(x)ν(X)] + s(x) = 1,

where in the last equation we have used the assumption thatν(X) = 1. This proves (i).
The final result (iii) is just a restatement of the definition of µ. For (ii), recall thatp(s,ν) =

µ(s), and hence

µP = µ(P − s ⊗ ν) + p(s,ν)ν = νG(P − s ⊗ ν) + p(s,ν)ν

= ν(G − I) + p(s,ν)ν

= µ − (1 − p(s,ν))ν ≤ µ.

⊓⊔

The following result shows that the formula (14) coincides with the representation given in
(8).

Proposition 1.3. Suppose thatν = δx∗ , the point mass at some statex∗ ∈ X, and suppose that
s(x) := P (x, x∗) for x ∈ X. Then we have for each bounded functiong : X → R,

(P − s ⊗ ν)ng (x) = Ex[g(X(n))1{τx∗ > n}], x ∈ X, n ≥ 1. (15)

Consequently,

Gg (x) :=

∞∑

n=0

(P − s ⊗ ν)ng (x) = Ex

[τx∗−1∑

t=0

g(X(t))
]
.

Proof. We have(P − s ⊗ ν)(x, y) = P (x, y) − P (x, x∗)1y=x∗ = P (x, y)1y 6=x∗ . Or, in proba-
bilistic notation,

(P − s ⊗ ν)(x, y) = Px{X(1) = y, τx∗ > 1}, x, y ∈ X.

This establishes the formula (15) for n = 1. The result then extends to arbitraryn ≥ 1 by
induction. If (15) is true for any givenn, then(P − s ⊗ ν)n+1(x, g) =
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∑

y∈X

[
(P−s ⊗ ν)(x, y)

][
(P − s ⊗ ν)n(y, g)

]

=
∑

y∈X

Px{X(1) = y, τx∗ > 1}Ey [g(X(n))1{τx∗ > n}]

= Ex

[
1{τx∗ > 1}E[g(X(n + 1))1{X(t) 6= x∗, t = 2, . . . , n + 1} | X(1)]

]

= Ex

[
g(X(n + 1))1{τx∗ > n + 1}

]

where the second equation follows from the induction hypothesis, and in the third equation the
Markov property was applied. The final equation follows fromthe smoothing property of the
conditional expectation. ⊓⊔

To solve Poisson’s equation (2) we again apply Proposition2.1. First note that the solution
h is not unique since we can always add a constant to obtain a newsolution to (2). This gives us
some flexibility: assumethat ν(h) = 0, so that(P − s ⊗ ν)h = Ph. This leads to a familiar
looking identity,

[I − (P − s ⊗ ν)]h = c̃.

Provided the inversion can be justified, this leads to the representation

h = [I − (P − s ⊗ ν)]−1c̃ = Gc̃. (16)

Proposition 1.4. Suppose thatµ(X) < ∞. If c : X → R is any function satisfyingµ(|c|) < ∞
then the functionh = Gc̃ is finite valued on the support ofν and solves Poisson’s equation.

Proof. We haveµ(|c̃|) = ν(G|c̃|), which shows thatν(G|c̃|) < ∞. It follows that h is finite
valued a.e.[ν]. Note also from the representation ofµ,

ν(h) = ν(Gc̃) = µ(c̃) = µ(c̃) = 0.

To see thath solves Poisson’s equation we write,

Ph = (P − s ⊗ ν)h = (P − s ⊗ ν)Gc̃ = (G − I)c̃ = h − c̃.

⊓⊔

The conclusion thath(x) is finite for a.e. x with respect to the small measureν is very weak
— what if ν has only one point of support! This will be strengthened in two steps. First, in the
next section we introduce a more flexible setting in which we can assume that the support ofν

coincides with the support of the invariant probabilityπ. Next, based on a Lyapunov function we
obtain a uniform bound onh over allx ∈ X.

2 Communication

The one-step minorization condition (11) can always be satisfied for a Markov chain by taking
ν = δx∗ as in Proposition1.3. It will be useful to construct small functions and measuresthat are
somewhat “larger”. This is made possible through the introduction of the resolvent matrices.
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2.1 Resolvents

Theresolvent matrixis defined by the infinite sum,

R(x, y) =
∞∑

t=0

2−t−1P t(x, y), x, y ∈ X. (17)

The matrixR can be expressed as an inverse in each of the following forms,

R = [2I − P ]−1 = [I −D]−1

The resolvent satisfiesR(x,X) :=
∑

y R(x, y) = 1, and hence it can be interpreted as a
transition matrix. In fact, it is precisely the transition matrix for a sampled process. Suppose that
{tk} is an i.i.d. process with geometric distribution satisfying P{tk = n} = 2−n−1 for n ≥ 0,
k ≥ 1. Let {Tk : k ≥ 0} denote the sequence of partial sums,

T0 = 0, andTk+1 = Tk + tk+1 for k ≥ 0.

Then, the sampled process,
Y (k) = X(Tk), k ≥ 0, (18)

is a Markov chain with transition matrixR.
Solutions to the invariance equations forY andX are closely related:

Proposition 2.1. For any Markov chainX onX with transition matrixP ,

(i) The resolvent equation holds,

DR = RD = DR, whereDR = R − I. (19)

(ii) A probability distributionπ onX is P -invariant if and only if it isR-invariant.

(iii) Suppose that an invariant measureπ exists, and thatg : X → R is given withπ(|g|) < ∞.
Then, a functionh : X → R solves Poisson’s equationDh = −g̃ with g̃ := g − π(g), if and
only if

DRh = −Rg̃. (20)

Proof. From the definition ofR we have,

PR =

∞∑

t=0

2−(t+1)P t+1 =

∞∑

t=1

2−tP t = 2R − I.

HenceDR = PR − R = R − I, proving (i).
To see (ii) we pre-multiply the resolvent equation (19) by π,

πDR = πDR

Obviously then,πD = 0 if and only if πDR = 0, proving (ii). The proof of (iii) is similar. ⊓⊔
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For generalγ > 0 we can define the generalization ofR,

Rγ =

∞∑

t=0

(1 + γ)−t−1P t (21)

It is also called a resolvent matrix, and can be expressed as an inverse,

Rγ = [Iγ −D]−1 (22)

The resolvent equation in Proposition2.1 (i) can be generalized to any of these resolvent
matrices:

Proposition 2.2. Consider the family of resolvent matrices(21). We have the two resolvent
equations,

(i) [γI −D]Rγ = Rγ [γI −D] = I, γ > 0.

(ii) For distinctγ1, γ2 ∈ (1,∞),

Rγ2
= Rγ1

+ (γ1 − γ2)Rγ1
Rγ2

= Rγ1
+ (γ1 − γ2)Rγ2

Rγ1
(23)

Proof. For anyγ > 0 we can express the resolvent as the matrix inverse (22), from which we
deduce (i). To see (ii) write,

[γ1I −D] − [γ2I −D] = (γ1 − γ2)I

Multiplying on the left by[γ1I −D]−1 and on the right by[γ2I −D]−1 gives,

[γ2I −D]−1 − [γ1I −D]−1 = (γ1 − γ2)[γ1I −D]−1[γ2I −D]−1

which is the first equality in (23). The proof of the second equality is identical. ⊓⊔

All of the representation theorems can be generalized basedon the relaxed minorization con-
dition,

R(x, y) ≥ s(x)ν(y) x, y ∈ X. (24)

Once again, the functions and probability measureν are calledsmallif the minorization condition
is satisfied.

When the minorization condition holds we can define the potential matrix in terms of the
resolvent,

G =

∞∑

n=0

(R − s ⊗ ν)n . (25)

The value of moving to the resolvent is that we can more easilygeneralize to a continuous state
space. There are other technical benefits in developing stability theory.

We first consider generalizations of classical irreducibility for a finite state space Markov
chain.
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2.2 Absorbing sets andx∗-irreducibility

x∗-Irreducibility is a basic structural assumption for a Markov chain - it is rarely violated in prac-
tice.

Definition 2.1. Irreducibility

For a Markov chain on a countable state space:

(i) Let x∗ be some fixed state inX. The Markov chain is calledx∗-irreducible if for any other
x ∈ X,

R(x, x∗) > 0

(ii) It is simply calledirreducible if the chain isx∗-irreducible foreveryx∗ ∈ X.

The following result shows that one can assume without loss of generality that the chain is
irreducible by restricting to anabsorbingsubset ofX. The setXx∗ ⊂ X defined in Proposition2.3
is known as acommunicating class.

Proposition 2.3. For eachx∗ ∈ X the set defined by

Xx∗ = {y : R(x∗, y) > 0} (26)

is absorbing:P (x,Xx∗) = 1 for eachx ∈ Xx∗. If X is x∗-irreducible then the process may be
restricted toXx∗ , and the restricted process is irreducible.

Proof. We haveDR = R − I, which implies thatR = 1
2(RP + I). Consequently, for any

x0, x1 ∈ X we obtain the lower bound,

R(x∗, x1) ≥ 1
2

∑

y∈X

R(x∗, y)P (y, x1) ≥ 1
2R(x∗, x0)P (x0, x1).

Consequently, ifx0 ∈ Xx∗ andP (x0, x1) > 0 thenx1 ∈ Xx∗. This shows thatXx∗ is always
absorbing. ⊓⊔

When the chain isx∗-irreducible then one can solve the minorization conditionwith s positive
everywhere:

Lemma 2.4. Suppose thatX is x∗-irreducible. Then there existss : X → [0, 1] and a probability
distributionν onX satisfying,

s(x) > 0 for all x ∈ X andν(y) > 0 for all y ∈ Xx∗.

Proof. Chooseγ1 = 1, γ2 ∈ (0, 1), and defines0(x) = 1x∗(x), ν0(y) = Rγ2
(x∗, y), x, y ∈ X,

so thatRγ2
≥ s0 ⊗ ν0. From (23),

Rγ2
= R1 + (1 − γ2)R1Rγ2

≥ (1 − γ2)R1[s0 ⊗ ν0].
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Settings = (1 − γ2)R1s0 and ν = ν0 gives R = R1 ≥ s ⊗ ν. The functions is positive
everywhere due to thex∗-irreducibility assumption, andν is positive onXx∗ sinceRγ2

(x∗, y) > 0
if and only if R(x∗, y) > 0. ⊓⊔

The following generalization of Proposition1.2 is the key step in establishing criteria for
existence of invariant measure, and bounds on solutions to the dynamic programming equations.

Lemma 2.5. Suppose that the functions : X → [0, 1) and the probability distributionν on X

satisfy(11). Then,

(i) Gs (x) ≤ 1 for everyx ∈ X.

(ii) (R − s ⊗ ν)G = G(R − s ⊗ ν) = G − I.

(iii) If X is x∗-irreducible ands(x∗) > 0, thensupx∈X G(x, y) < ∞ for eachy ∈ X.

Proof. Part (i) follows form Proposition1.2(i), and (ii) follows from the definition ofG.
To prove (iii) we first apply (ii), givingGR = G − I + Gs ⊗ ν. Consequently, from (i),

GRs = Gs − s + ν(s)Gs ≤ 2 onX. (27)

Under the conditions of (iii) we haveRs (y) > 0 for everyy ∈ X, and this completes the proof of
(iii), with the explicit bound,

G(x, y) ≤ 2(Rs (y))−1 for all x, y ∈ X.

⊓⊔

With G redefined usingR we obtain the following generalization of Proposition1.4. Propo-
sition 2.6 (iii) provides the promised improvement of the conclusion that h is finite valued a.e.
[ν].

Proposition 2.6. Suppose that the minorization condition(24) holds, and thatG is defined in
(25). Then,

(i) µ := νG is sub-invariant.

(ii) If µ(X) < ∞ thenµ is invariant.

(iii) If µ(X) < ∞, and c : X → R is any function satisfyingµ(|c|) < ∞, then the function
h = GRc̃ is finite valued on the support ofπ and solves Poisson’s equation.

⊓⊔

For a proof of the following result the reader is referred to [3]. A key step in the proof is the
application of Proposition1.3with G redefined using the resolvent.

Proposition 2.7. For a x∗-irreducible Markov chain,

(i) p(s,ν) = 1 if and only if Px∗{τx∗ < ∞} = 1. If either of these conditions hold then
Gs(x) = Px{τx∗ < ∞} = 1 for eachx ∈ Xx∗ .
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(ii) µ(X) < ∞ if and only ifEx∗ [τx∗ ] < ∞. ⊓⊔

It turns out that the casep(s,ν) = 1 is equivalent to a form of recurrence.

Definition 2.2. Recurrence

A x∗-irreducible Markov chainX is called,

(i) Harris recurrent, if the return time (7) is finite almost-surely from each initial condition,

Px{τx∗ < ∞} = 1, x ∈ X.

(ii) Positive Harris recurrent, if it is Harris recurrent, and an invariant probability measureπ

exists.

2.3 Near-monotone functions

A function c : X → R is callednear-monotoneif the sublevel set,Sc(r) := {x : c(x) ≤ r} is finite
for eachr < supx∈X c(x). In applications the functionc is typically a cost function, and hence the
near monotone assumption is the natural condition that large states have relatively high cost.

The functionc = 1{x∗}c is near monotone sinceSc(r) consists of the singleton{x∗} for
r ∈ [0, 1), and it is empty forr < 0. A solution to Poisson’s equation with this forcing function
can be constructed based on the sample path formula (9),

h(x) = Ex

[τx∗−1∑

t=0

1{x∗}c(X(t)) − π({x∗}c)
]

= (1 − π({x∗}c)Ex[τx∗ ] − 1x∗(x) = π(x∗)Ex[σx∗ ]

(28)

The last equality follows from the formulaπ(x∗)Ex∗ [τx∗ ] = 1 (see (8)) and the definitionσx∗ = 0
whenX(0) = x∗.

The fact thath is bounded from below is a special case of the following general result.

Proposition 2.8. Suppose thatc is near monotone withη = π(c) < ∞. Then,

(i) The relative value functionh given in(16) is uniformly bounded from below, finite-valued
onXx∗, and solves Poisson’s equation on the possibly larger setXh = {x ∈ X : h(x) < ∞}.

(ii) Suppose there exists a non-negative valued function satisfying g(x) < ∞ for somex ∈
Xx∗ , and the Poisson inequality,

Dg (x) ≤ −c(x) + η, x ∈ X. (29)

Theng(x) = h(x) + ν(g) for x ∈ Xx∗, whereh is given in(16). Consequently,g solves
Poisson’s equation onXx∗ .
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Proof. Note that ifη = supx∈X c(x) then c(x) ≡ η on Xx∗ , so we may takeh ≡ 1 to solve
Poisson’s equation.

We henceforth assume thatη < supx∈X c(x), and defineS = {x ∈ X : c(x) ≤ η}. This set
is finite sincec is near-monotone. We have the obvious boundc̃(x) ≥ −η1S(x) for x ∈ X, and
hence

h(x) ≥ −ηGR1S (x), x ∈ X.

Lemma2.5and (27) imply thatGR1S is a bounded function onX. This completes the proof that
h is bounded from below, and Proposition1.4establishes Poisson’s equation.

To prove (ii) we maintain the notation used in Proposition1.4. On applying Lemma2.4 we
can assume without loss of generality that the pair(s, ν) used in the definition ofG are non-zero
onXx∗. Note first of all that by the resolvent equation,

Rg − g = RDg ≤ −Rc̃.

We thus have the bound,
(R − s ⊗ ν)g ≤ g − Rc̃ − ν(g)s,

and hence for eachn ≥ 1,

0 ≤ (R − s ⊗ ν)ng ≤ g −
n−1∑

i=0

(R − s ⊗ ν)iRc̃ − ν(g)
n−1∑

i=0

(R − s ⊗ ν)is.

On lettingn ↑ ∞ this gives,

g ≥ GRc̃ + ν(g)Gs = h + ν(g)h0,

whereh0 := Gs. The functionh0 is identically one onXx∗ by Proposition2.7, which implies that
g − ν(g) ≥ h onXx∗. Moreover, using the fact thatν(h) = 0,

ν(g − ν(g) − h) = ν(g − ν(g)) − ν(h) = 0.

Henceg − ν(g) − h = 0 a.e.[ν], and this implies thatg − ν(g) − h = 0 onXx∗ as claimed. ⊓⊔

Bounds on the potential matrixG are obtained in the following section to obtain criteria for
the existence of an invariant measure as well as explicit bounds on the relative value function.

3 Criteria for stability

To compute the invariant measureπ it is necessary to compute the mean random sum (8), or invert
a matrix, such as through an infinite sum as in (13). To verify theexistenceof an invariant measure
is typically far easier.

In this section we describe Foster’s criterion to test for the existence of an invariant measure,
and several variations on this approach which are collectively called theFoster-Lyapunov criteria
for stability. Each of these stability conditions can be interpreted as a relaxation of the Poisson
inequality(29).
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x

∆(x)

X(t)

(x, V (x))

V (X(t))

Figure 1:V (X(t)) is decreasing outside of the setS.

3.1 Foster’s criterion

Foster’s criterion is the simplest of the “Foster-Lyapunov” drift conditions for stability. It requires
that for a non-negative valued functionV onX, a small setS ⊂ X, andb < ∞,

DV (x) ≤ −1 + b1S(x), x ∈ X. (V2)

This is precisely Condition (V3) usingf ≡ 1.
The existence of a solution to (V2) is equivalent to positiverecurrence. This is summarized

in the following.

Theorem 3.1. (Foster’s Criterion) The following are equivalent for ax∗-irreducible Markov
chain

(i) An invariant measureπ exists.

(ii) There is a small setS ⊂ X such thatEx[τS ] < ∞ for x ∈ S.

(iii) There existsV : X → (0,∞], finite at somex0 ∈ X, a finite setS ⊂ X, andb < ∞ such
that Foster’s Criterion (V2) holds.

If (iii) holds then there existsbx∗ < ∞ such that

Ex[τx∗ ] ≤ V (x) + bx∗ , x ∈ X.

Proof. We just prove the implication (iii)=⇒ (i). The remaining implications may be found in [2,
Chapter 11].
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Take any pair(s, ν) positive onXx∗ and satisfyingR ≥ s ⊗ ν. On applying Proposition1.2
it is enough to shown thatµ(X) < ∞ with µ = νG.

Letting f ≡ 1 we have under (V2)DV ≤ −f + b1S, and on applyingR to both sides of this
inequality we obtain using the resolvent equation (19), (R − I)V = RDV ≤ −Rf + bR1S , or
on rearranging terms,

RV ≤ V − Rf + bR1S . (30)

From (30) we have(R−s⊗ν)V ≤ V −Rf +g, whereg :=bR1S . On iterating this inequality
we obtain,

(R − s ⊗ ν)2V ≤ (R − s ⊗ ν)(V − Rf + g)

≤ V − Rf + g

−(R − s ⊗ ν)Rf

+(R − s ⊗ ν)g.

By induction we obtain for eachn ≥ 1,

0 ≤ (R − s ⊗ ν)nV ≤ V −
n−1∑

i=0

(R − s ⊗ ν)iRf +

n−1∑

i=0

(R − s ⊗ ν)ig .

Rearranging terms then gives,

n−1∑

i=0

(R − s ⊗ ν)iRf ≤ V +
n−1∑

i=0

(R − s ⊗ ν)ig,

and thus from the definition (13) we obtain the bound,

GRf ≤ V + Gg. (31)

To obtain a bound on the final term in (31) recall thatg := bR1S . From its definition we have,

GR = G[R − s ⊗ ν] + G[s ⊗ ν] = G − I + (Gs) ⊗ ν,

which shows that
Gg = bGR1S ≤ b[G1S + ν(S)Gs].

This is uniformly bounded overX by Lemma2.5. Sincef ≡ 1 the bound (31) implies that
GRf (x) = G(x,X) ≤ V (x) + b1, x ∈ X, with b1 an upper bound onGg.

Integrating both sides of the bound (31) with respect toν gives,

µ(X) =
∑

x∈X

ν(x)G(x,X) ≤ ν(V ) + ν(g).

The minorization and the drift inequality (30) give

sν(V ) = (s ⊗ ν)(V ) ≤ RV ≤ V − 1 + g,

which establishes finiteness ofν(V ), and the bound,

ν(V ) ≤ inf
x∈X

V (x) − 1 + g(x)

s(x)
.

⊓⊔
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3.2 Criteria for finite moments

We now turn to the issue of performance bounds based on the discounted-cost defined in (21) or
the average costη = π(c) for a cost functionc : X → R+. We also introduce martingale methods
to obtain performance bounds. We let{Ft : t ≥ 0} denote the filtration, or history generated by
the chain,

Ft := σ{X(0), . . . ,X(t)}, t ≥ 0.

Recall that a random variableτ taking values inZ+ is called astopping timeif for eacht ≥ 0,

{τ = t} ∈ Ft.

That is, by observing the processX on the time interval[0, t] it is possible to determine whether
or notτ = t.

The Comparison Theorem is the most common approach to obtaining bounds on expectations
involving stopping times.

Theorem 3.2. (Comparison Theorem) Suppose that the non-negative functionsV, f, g satisfy
the bound,

DV ≤ −f + g. x ∈ X. (32)

Then for eachx ∈ X and any stopping timeτ we have

Ex

[τ−1∑

t=0

f(X(t))
]
≤ V (x) + Ex

[τ−1∑

t=0

g(X(t))
]
.

Proof. DefineM(0) = V (X(0)), and forn ≥ 1,

M(n) = V (X(n)) +

n−1∑

t=0

(f(X(t)) − g(X(t))).

The assumed inequality can be expressed,

E[V (X(t + 1)) | Ft] ≤ V (X(t)) − f(X(t)) + g(X(t)), t ≥ 0,

which shows that the stochastic processM is asuper-martingale,

E[M(n + 1) | Fn] ≤ M(n), n ≥ 0.

Define forN ≥ 1,

τN = min{t ≤ τ : t + V (X(t)) + f(X(t)) + g(X(t)) ≥ N}.

This is also a stopping time. The processM is uniformly bounded below by−N2 on the time-
interval(0, . . . , τN − 1), and it then follows from the super-martingale property that

E[M(τN )] ≤ E[M(0)] = V (x), N ≥ 1.

From the definition ofM we thus obtain the desired conclusion withτ replaced byτN : For each
initial conditionX(0) = x,
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Ex

[τN−1∑

t=0

f(X(t))
]
≤ V (x) + Ex

[τN−1∑

t=0

g(X(t))
]
.

The result then follows from the Monotone Convergence Theorem since we haveτN ↑ τ as
N → ∞. ⊓⊔

In view of the Comparison Theorem, to boundπ(c) we search for a solution to (V3) or (32)
with |c| ≤ f . The existence of a solution to either of these drift inequalities is closely related to
the following stability condition,

Definition 3.1. Regularity

Suppose thatX is ax∗-irreducible Markov chain, and thatc : X → R+ is a given function. The
chain is calledc-regular if the following cost over ay-cycle is finite for each initial condition
x ∈ X, and eachy ∈ Xx∗ :

Ex

[τy−1∑

t=0

c(X(t))
]

< ∞.

Proposition 3.3. Suppose that the functionc : X → R satisfiesc(x) ≥ 1 outside of some finite
set. Then,

(i) If X is c-regular then it is positive Harris recurrent andπ(c) < ∞.

(ii) Conversely, ifπ(c) < ∞ then the chain restricted to the support ofπ is c-regular.

Proof. The result follows from [2, Theorem 14.0.1]. To prove (i) observe thatX is Harris recur-
rent sincePx{τx∗ < ∞} = 1 for all x ∈ X when the chain isc-regular. We have positivity and
π(c) < ∞ based on the representation (8). ⊓⊔

Criteria for c-regularity will be established through operator manipulations similar to those
used in the proof of Theorem3.1 based on the following refinement of Foster’s Criterion: Fora
non-negative valued functionV onX, a finite setS ⊂ X, b < ∞, and a functionf : X → [1,∞),

DV (x) ≤ −f(x) + b1S(x), x ∈ X. (V3)

The functionf is interpreted as a bounding function. In Theorem3.4we considerπ(c) for func-
tionsc bounded byf in the sense that,

‖c‖f := sup
x∈X

|c(x)|
f(x)

< ∞. (33)

Theorem 3.4. Suppose thatX is x∗-irreducible, and that there existsV : X → (0,∞), f : X →
[1,∞), a finite setS ⊂ X, andb < ∞ such that (V3) holds. Then for any functionc : X → R+

satisfying‖c‖f ≤ 1,
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(i) The average cost satisfies the uniform bound,

ηx = π(c) ≤ b < ∞, x ∈ X.

(ii) The discounted-cost value function satisfies the followinguniform bound, for any given
discount parameterγ > 0,

hγ(x) ≤ V (x) + bγ−1, x ∈ X.

(iii) There exists a solution to Poisson’s equation satisfying, for someb1 < ∞,

h(x) ≤ V (x) + b1, x ∈ X.

Proof. Observe that (ii) and the definition (5) imply (i).
To prove (ii) we apply the resolvent equation,

PRγ = RγP = (1 + γ)Rγ − I. (34)

Equation (34) is a restatement of Equation (22). Consequently, under (V3),

(1 + γ)RγV − V = RγPV ≤ Rγ [V − f + b1S ].

Rearranging terms givesRγf + γRγV ≤ V + bRγ1S . This establishes (ii) sinceRγ1S (x) ≤
Rγ(x,X) ≤ γ−1 for x ∈ X.

We now prove (iii). Recall that the measureµ = νG is finite and invariant since we may
apply Theorem3.1 when the chain isx∗-irreducible. We shall prove that the functionh = GRc̃

given in (16) satisfies the desired upper bound.
The proof of the implication (iii)=⇒ (i) in Theorem3.1was based upon the bound (31),

GRf ≤ V + Gg,

whereg := bR1S . Although it was assumed there thatf ≡ 1, the same steps lead to this bound for
generalf ≥ 1 under (V3). Consequently, since0 ≤ c ≤ f ,

GRc̃ ≤ GRf ≤ V + Gg.

Part (iii) follows from this bound and Lemma2.5with b1 := supGg (x) < ∞. ⊓⊔

4 Ergodic theorems and coupling

The existence of a Lyapunov function satisfying (V3) leads to mean ergodic theorems such as (5),
and refinements of this drift inequality lead to stronger results. These results are based on the
coupling method described next.
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4.1 Coupling

Couplingis a way of comparing the behavior of the process of interestX with another processY
which is already understood. For example, ifY is taken as the stationary version of the process,
with Y (0) ∼ π, we then have the trivial mean ergodic theorem,

lim
t→∞

E[c(Y (t))] = E[c(Y (t0))], t0 ≥ 0 .

This leads to a corresponding ergodic theorem forX provided the two processes couple in a
suitably strong sense.

To precisely define coupling we define a bivariate process,

Ψ(t) =

(
X(t)

Y (t)

)
, t ≥ 0,

whereX andY are two copies of the chain with transition probabilityP , and different initial
conditions. It is assumed throughout thatX is x∗-irreducible, and we define thecoupling timefor
Ψ as the first time both chains reachx∗ simultaneously,

T = min(t ≥ 1 : X(t) = Y (t) = x∗) = min
(
t : Ψ(t) =

(x∗

x∗

))
.

To give a full statistical description ofΨ we need to explain howX andY are related. We
assume a form of conditional independence fork ≤ T :

P{Ψ(t + 1) = (x1, y1)
T | Ψ(0), . . . ,Ψ(t);Ψ(t) = (x0, y0)

T, T > t}

= P (x0, x1)P (y0, y1).
(35)

It is assumed that the chains coellesce at timeT , so thatX(t) = Y (t) for t ≥ T .
The processΨ is not itself Markov since givenΨ(t) = (x, x)T with x 6= x∗ it is impossible

to know if T ≤ t. However, by appending the indicator function of this eventwe obtain a Markov
chain denoted,

Ψ∗(t) = (Ψ(t), 1{T ≤ t}),
with state spaceX∗ = X × X × {0, 1}. The subsetX × X × {1} is absorbing for this chain.

The following two propositions allow us to infer propertiesof Ψ
∗ based on properties ofX.

The proof of Proposition4.1 is immediate from the definitions.

Proposition 4.1. Suppose thatX satisfies (V3) withf coercive. Then (V3) holds for the bivariate
chainΨ

∗ in the form,

E[V∗(Ψ(t + 1)) | Ψ(t) = (x, y)T] ≤ V∗(x, y) − f∗(x, y) + b∗,

with V∗(x, y) = V (x) + V (y), f∗(x, y) = f(x) + f(y), andb∗ = 2b. Consequently, there exists
b0 < ∞ such that,

E

[T−1∑

t=0

(
f(X(t)) + f(Y (t))

)]
≤ 2[V (x) + V (y)] + b0, x, y ∈ X.

⊓⊔
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A necessary condition for the Mean Ergodic Theorem for arbitrary initial conditions is aperi-
odicity. Similarly, aperiodicity is both necessary and sufficient for x∗∗-irreducibility of Ψ∗ with
x∗∗ := (x∗, x∗, 1)T ∈ X

∗:

Proposition 4.2. Suppose thatX is x∗-irreducible and aperiodic. Then the bivariate chain is
x∗∗-irreducible and aperiodic.

Proof. Fix anyx, y ∈ X, and define

n0 = min{n ≥ 0 : Pn(x, x∗)Pn(y, x∗) > 0}.

The minimum is finite sinceX is x∗-irreducible and aperiodic. We haveP{T ≤ n} = 0 for
n < n0 and by the construction ofΨ,

P{T = n0} = P{Ψ(n0) = (x∗, x∗)T | T ≥ n0} = Pn0(x, x∗)Pn0(y, x∗) > 0.

This establishesx∗∗-irreducibility.
Forn ≥ n0 we have,

P{Ψ∗(n) = x∗∗} ≥ P{T = n0, Ψ∗(n) = x∗∗} = Pn0(x, x∗)Pn0(y, x∗)Pn−n0(x∗, x∗).

The right hand side is positive for alln ≥ 0 sufficiently large sinceX is aperiodic. ⊓⊔

4.2 Value iteration

One approach to compute a solution to Poisson’s equation numerically is through the dynamic
programming recursion,

Vn+1(x) = c(x) + PVn(x), n ≥ 0, x ∈ X (36)

It can be shown by induction that each value function can be expressed as the finite-horizon cost,

Vn(x) = Ex

[
V0(X(n)) +

n−1∑

t=0

c(X(t))
]
, n ≥ 0, x ∈ X (37)

Under general conditions we haveVn(x) − Vn(x∗) → h(x), n → ∞, a solution to Poisson’s
equation In the countable state space setting the proof follows from coupling.

Suppose that the processΨ is constructed so thatY is not stationary, but rather begins at
the initial stateY (0) = x∗. The initial condition forX is at some arbitrary initial condition
X(0) = x ∈ X. Following the coupling timeT ≥ 1 the two processes again coalesce, giving

Vn(x) − Vn(x∗) = E

[(
V0(X(n)) − V0(Y (n))

)
1{n < T} +

n−1∑

t=0

(
c(X(t)) − c(Y (t))

)
1{t < T}

]

For simplicity let’s assume that the dynamic programming recursion is initialized withV0 ≡ 0.
We then obtain,

Vn(x) − Vn(x∗) = E

[n∧T−1∑

t=0

(
c(X(t)) − c(Y (t))

)]
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and

lim
n→∞

(
Vn(x) − Vn(x∗)

)
= E

[T−1∑

t=0

(
c(X(t)) − c(Y (t))

)]

An extension of Kac’s Theorem gives,

E

[T−1∑

t=0

c(Y (t))
]

= ηE[T ]

with η = π(c). Hence the limit becomes,

lim
n→∞

(
Vn(x) − Vn(x∗)

)
= h(x) := E

[T−1∑

t=0

(
c(X(t)) − η

)]

With a bit more work we can show that the functionh defined above is a solution to Poisson’s
equation satisfyingh(x∗) = 0.

4.3 Mean ergodic theorem

To prove ergodic theorems we return to the setting in whichY is stationary, withY (t) ∼ π for
eacht.

A mean ergodic theorem is obtained based upon the followingcoupling inequality:

Proposition 4.3. For any giveng : X → R we have,

∣∣E[g(X(t))] − E[g(Y (t))]
∣∣ ≤ E[(|g(X(t))| + |g(Y (t))|)1(T > t)].

If Y (0) ∼ π so thatY is stationary we thus obtain,

|E[g(X(t))] − π(g)| ≤ E[(|g(X(t))| + |g(Y (t))|)1(T > t)].

Proof. The differenceg(X(t)) − g(Y (t)) is zerofor t ≥ T . ⊓⊔

Thef -total variation normof a signed measureµ onX is defined by

‖µ‖f = sup{|µ(g)| : ‖g‖f ≤ 1}.

Whenf ≡ 1 then this is exactly twice thetotal-variation norm: For any two probability measures
π, µ,

‖µ − π‖tv := sup
A⊂X

|µ(A) − π(A)|.

Theorem 4.4. Suppose thatX is aperiodic, and that the assumptions of Theorem3.4 hold.
Then,

(i) ‖P t(x, · ) − π‖f → 0 ast → ∞ for eachx ∈ X.
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(ii) There existsb0 < ∞ such that for eachx, y ∈ X,

∞∑

t=0

‖P t(x, · ) − P t(y, · )‖f ≤ 2[V (x) + V (y)] + b0.

(iii) If in addition π(V ) < ∞, then there existsb1 < ∞ such that

∞∑

t=0

‖P t(x, · ) − π‖f ≤ 2V (x) + b1.

The coupling inequality is only useful if we can obtain a bound on the expectationE[|g(X(t))|1(T >

t)]. The following result shows that this vanishes whenX andY are each stationary.

Lemma 4.5. Suppose thatX is aperiodic, and that the assumptions of Theorem3.4 hold. As-
sume moreover thatX(0) andY (0) each have distributionπ, and thatπ(|g|) < ∞. Then,

lim
t→∞

E[(|g(X(t))| + |g(Y (t))|)1(T > t)] = 0.

Proof. Suppose thatX, Y are defined on the two-sided time-interval with marginal distribution
π. It is assumed that these processes are independent on{0,−1,−2, . . . }. By stationarity we can
write,

Eπ[|g(X(t))|1(T > t)] = Eπ[|g(X(t))|1{Ψ(i) 6= (x∗, x∗)T, i = 0, . . . , t}]

= Eπ[|g(X(0))|1{Ψ(i) 6= (x∗, x∗)T, i = 0,−1, . . . ,−t}] .

The expression within the expectation on the right hand sidevanishes ast → ∞ with probability
one by(x∗, x∗)T-irreducibility of the stationary process{Ψ(−t) : t ∈ Z+}. The Dominated
Convergence Theorem then implies that

lim
t→∞

E[|g(X(t))|1(T > t)] = Eπ[|g(X(0))|1{Ψ(i) 6= (x∗, x∗)T, i = 0,−1, . . . ,−t}] = 0.

Repeating the same steps withX replaced byY we obtain the analogous limit by symmetry.⊓⊔

Proof of Theorem4.4. We first prove (ii). From the coupling inequality we have, with X(0) = x,
X◦(0) = y,

|P tg (x) − P tg (y)| = |E[g(X(t))] − E[g(Y (t))]|

≤ E
[(
|g(X(t))| + |g(Y (t))|

)
1(T > t)

]

≤ ‖g‖f E
[(

f(X(t)) + f(Y (t))
)
1(T > t)

]

Taking the supremum over allg satisfying‖g‖f ≤ 1 then gives,

‖P t(x, · ) − P t(y, · )‖f ≤ E
[(

f(X(t)) + f(Y (t))
)
1(T > t)

]
, (38)

so that on summing overt,
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∞∑

t=0

‖P t(x, · ) − P t(y, · )‖f ≤
∞∑

t=0

E
[(

f(X(t)) + f(Y (t))
)
1(T > t)

]

= E

[T−1∑

t=0

(
f(X(t)) + f(Y (t))

)]
.

Applying Proposition4.1completes the proof of (ii).
To see (iii) observe that,

∑

y∈X

π(y)|P tg (x) − P tg (y)| ≥
∣∣∣
∑

y∈X

π(y)[P tg (x) − P tg (y)]
∣∣∣ = |P tg (x) − π(g)|.

Hence by (ii) we obtain (iii) withb1 = b0 + 2π(V ).

Finally we prove (i). Note that we only need establish the mean ergodic theorem in (i) for a
single initial conditionx0 ∈ X. To see this, first note that we have the triangle inequality,

‖P t(x, · ) − π( · )‖f ≤ ‖P t(x, · ) − P t(x0, · )‖f + ‖P t(x0, · ) − π( · )‖f , x, x0 ∈ X.

From this bound and Part (ii) we obtain,

lim sup
t→∞

‖P t(x, · ) − π( · )‖f ≤ lim sup
t→∞

‖P t(x0, · ) − π( · )‖f .

Exactly as in (38) we have, withX(0) = x0 andY (0) ∼ π,

‖P t(x0, · ) − π( · )‖f ≤ E
[(

f(X(t)) + f(Y (t))
)
1(T > t)

]
. (39)

We are left to show that the right hand side converges to zero for somex0. Applying Lemma4.5
we obtain,

lim
t→∞

∑

x,y

π(x)π(y)E
[
[f(X(t)) + f(Y (t))]1(T > t) | X(0) = x, Y (0) = y

]
= 0.

It follows that the right hand side of (39) vanishes ast → ∞ whenX(0) = x0 andY (0) ∼ π. ⊓⊔

4.4 Geometric ergodicity

Theorem4.4 provides a mean ergodic theorem based on the coupling timeT . If we can control
the tails of the coupling timeT then we obtain a rate of convergence ofP t(x, · ) to π.

The chain is calledgeometrically recurrentif Ex∗ [exp(ετx∗)] < ∞ for someε > 0. For such
chains it is shown in Theorem4.6 that for a.e.[π] initial conditionx ∈ X, the total variation norm
vanishes geometrically fast.

Theorem 4.6. The following are equivalent for an aperiodic,x∗-irreducible Markov chain:

(i) The chain is geometrically recurrent.

(ii) There existsV : X → [1,∞] with V (x0) < ∞ for somex0 ∈ X, ε > 0, b < ∞, and a
finite setS ⊂ X such that

DV (x) ≤ −εV (x) + b1S(x), x ∈ X. (V4)
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(iii) For somer > 1,
∞∑

n=0

‖Pn(x∗, ·) − π(·)‖1r
n < ∞.

If any of the above conditions hold, then withV given in (ii), we can findr0 > 1 andb < ∞ such
that the stronger mean ergodic theorem holds: For eachx ∈ X, t ∈ Z+,

‖P t(x, · ) − π( · )‖V := sup
|g|≤V

∣∣Ex[g(X(t)) − π(t)]
∣∣ ≤ br−t

0 V (x). (40)

⊓⊔

In applications Theorem4.6is typically applied by constructing a solution to the driftinequal-
ity (V4) to deduce the ergodic theorem in (40). The following result shows that (V4) is not that
much stronger than Foster’s criterion.

Proposition 4.7. Suppose that the Markov chainX satisfies the following three conditions:

(i) There existsV : X → (0,∞), a finite setS ⊂ X, andb < ∞ such that Foster’s Criterion
(V2) holds.

(ii) The functionV is uniformly Lipschitz,

lV := sup{|V (x) − V (y)| : x, y ∈ X, ‖x − y‖ ≤ 1} < ∞.

(iii) For someβ0 > 0, b1 < ∞,

b1 := sup
x∈X

Ex[eβ0‖X(1)−X(0)‖] < ∞.

Then, there existsε > 0 such that the controlled process isVε-uniformly ergodic withVε =
exp(εV ).

Proof. Let ∆̃V = V (X(1)) − V (X(0)), so thatEx[∆̃V ] ≤ −1 + b1S(x) under (V2). Using a
second order Taylor expansion we obtain for eachx andε > 0,

[Vε(x)]−1PVε (x) = Ex

[
exp

(
ε∆̃V

)]

= Ex

[
1 + ε∆̃V + 1

2ε2∆̃2
V exp

(
εϑx∆̃V

)]

≤ 1 + ε
(
−1 + b1S(x)

)
+ 1

2ε2
Ex

[
∆̃2

V exp
(
εϑx∆̃V

)]
(41)

whereϑx ∈ [0, 1]. Applying the assumed Lipschitz bound and the bound1
2z2 ≤ ez for z ≥ 0 we

obtain, for anya > 0,
1
2∆̃2

V exp
(
εϑx∆̃V

)
≤ a−2 exp

(
(a + ε)

∣∣∆̃V

∣∣)

≤ a−2 exp
(
(a + ε)lV

∥∥X(1) − X(0)
∥∥)

Settinga = ε1/3 and restrictingε > 0 so that(a + ε)lV ≤ β0, the bound (41) and (iii) then give,

[Vε(x)]−1PVε (x) ≤ (1 − ε) + εb1S(x) + ε4/3b1

This proves the theorem, since we have1 − ε + ε4/3b1 < 1 for sufficiently smallε > 0, and thus
(V4) holds forVε. ⊓⊔
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4.5 Sample paths and limit theorems

We conclude this section with a look at the sample path behavior of partial sums,

Sg(n) :=

n−1∑

t=0

g(X(t)) (42)

We focus on two limit theorems under (V3):

LLN TheStrong Law of Large Numbersholds for a functiong if for each initial condition,

lim
n→∞

1

n
Sg(n) = π(g) a.s.. (43)

CLT TheCentral Limit Theoremholds forg if there exists a constant0 < σ2
g < ∞ such that for

each initial conditionx ∈ X,

lim
n→∞

Px

{
(nσ2

g)
−1/2Sg̃(n) ≤ t

}
=

∫ t

−∞

1√
2π

e−x2/2 dx

whereg̃ = g − π(g). That is, asn → ∞,

(nσ2
g)

−1/2Sg̃(n)
w−→ N(0, 1).

The LLN is a simple consequence of the coupling techniques already used to prove the mean er-
godic theorem when the chain is aperiodic and satisfies (V3).A slightly different form of coupling
can be used when the chain is periodic. There is only room for asurvey of theory surrounding
the CLT, which is most elegantly approached using martingale methods. A relatively complete
treatement may be found in [2], and the more recent survey [1].

The following versions of the LLN and CLT are based on Theorem17.0.1 of [2].

Theorem 4.8. Suppose thatX is positive Harris recurrent and that the functiong satisfies
π(|g|) < ∞. Then the LLN holds for this function.

If moreover (V4) holds withg2 ∈ LV
∞ then,

(i) Letting g̃ denote the centered functioñg = g −
∫

g dπ, the constant

σ2
g := Eπ[g̃2(X(0))] + 2

∞∑

t=1

Eπ[g̃(X(0))g̃(X(t))] (44)

is well defined, non-negative and finite, and

lim
n→∞

1

n
Eπ

[(
Sg̃(n)

)2]
= σ2

g . (45)

(ii) If σ2
g = 0 then for each initial condition,

lim
n→∞

1√
n

Sg̃(n) = 0 a.s..
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(iii) If σ2
g > 0 then the CLT holds for the functiong.

⊓⊔

The proof of the theorem in [2] is based on consideration of the martingale,

Mg(t) := ĝ(X(t)) − ĝ(X(0)) +

t−1∑

i=0

g̃(X(i)), t ≥ 1,

with Mg(0) := 0. This is a martingale since Poisson’s equationP ĝ = ĝ − g̃ gives,

E[ĝ(X(t)) | X(0), . . . ,X(t − 1)] = ĝ(X(t − 1)) − g̃(X(t − 1)),

so that,
E[Mg(t) | X(0), . . . ,X(t − 1)] = Mg(t − 1).

The proof of the CLT is based on the representationSg̃(t) = Mg(t) + ĝ(X(t)) − ĝ(X(0)),
combined with limit theory for martingales, and the bounds on solutions to Poisson’s equation
given in Theorem3.4.

An alternate representation for the asymptotic variance can be obtained through the alternate
representation for the martingale as the partial sums of a martingale difference sequence,

Mg(t) =
t∑

i=1

∆̃g(i), t ≥ 1,

with {∆̃g(t) := ĝ(X(t)) − ĝ(X(t − 1)) + g̃(X(t − 1))}. Based on the martingale difference
property,

E[∆̃g(t) | Ft−1] = 0, t ≥ 1,

it follows that these random variables are uncorrelated, sothat the variance ofM g can be ex-
pressed as the sum,

E[(Mg(t))
2] =

t∑

i=1

E[(∆̃g(i))
2], t ≥ 1.

In this way it can be shown that the asymptotic variance is expressed as the steady-state variance
of ∆̃g(i). For a proof of (46) (under conditions much weaker than assumed in Proposition4.9) see
[2, Theorem 17.5.3].

Proposition 4.9. Under the assumptions of Theorem4.8 the asymptotic variance can be ex-
pressed,

σ2
g = Eπ[(∆̃g(0))

2] = π(ĝ2 − (P ĝ)2) = π(2gĝ − g2). (46)

⊓⊔
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5 Converse theorems

The aim of Section4 was to explore the application of (V3) and the coupling method. We now
explain why (V3) isnecessaryas well as sufficient for these ergodic theorems to hold.

Converse theorems abound in the stability theory of Markov chains. Theorem5.1 contains
one such result: Ifπ(f) < ∞ then there is a solution to (V3), defined as a certain “value function”.
For ax∗-irreducible chain the solution takes the form,

PVf = Vf − f + bf1x∗ , (47)

where the Lyapunov functionVf defined in (48) is interpreted as the ‘cost to reach the statex∗’.
The identity (47) is an example of a dynamic programming equation.

Theorem 5.1. Suppose thatX is a x∗-irreducible, positive recurrent Markov chain onX and
thatπ(f) < ∞, wheref : X → [1,∞] is given. Then, with

Vf (x) := Ex

[σx∗∑

t=0

f(X(t))
]
, x ∈ X, (48)

the following conclusions hold:

(i) The setXf = {x : Vf (x) < ∞} is non-empty and absorbing:

P (x,Xf ) = 1 for all x ∈ Xf .

(ii) The identity(47) holds withbf := Ex∗

[ τx∗∑

t=1

f(X(t))
]

< ∞.

(iii) For x ∈ Xf ,

lim
t→∞

1

t
Ex[Vf (X(t))] = lim

t→∞
Ex[Vf (X(t))1{τx∗ > t}] = 0.

Proof. Applying the Markov property, we obtain for eachx ∈ X,

PVf (x) = Ex

[
EX(1)

[σx∗∑

t=0

f(X(t))
]]

= Ex

[
E

[ τx∗∑

t=1

f(X(t)) | X(0),X(1)
]]

= Ex

[ τx∗∑

t=1

f(X(t))
]

= Ex

[ τx∗∑

t=0

f(X(t))
]
− f(x), x ∈ X.

On noting thatσx∗ = τx∗ for x 6= x∗, the identity above implies the desired identity in (ii).
Based on (ii) it follows thatXf is absorbing. It is non-empty since it containsx∗, which

proves (i).
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To prove the first limit in (iii) we iterate the idenitity in (ii) to obtain,

Ex[Vf (X(t))] = P tVf (x) = Vf (x) +
t−1∑

k=0

[−P kf (x) + bfP k(x, x∗)], t ≥ 1.

Dividing by t and lettingt → ∞ we obtain, wheneverVf (x) < ∞,

lim
t→∞

1

t
Ex[Vf (X(t))] = lim

t→∞

1

t

t−1∑

k=0

[−P kf (x) + bfP k(x, x∗)].

Applying (i) and (ii) we conclude that the chain can be restricted toXf , and the restricted process
satisfies (V3). Consequently, the conclusions of the Mean Ergodic Theorem4.4 hold for initial
conditionsx ∈ Xf , which gives

lim
t→∞

1

t
Ex[Vf (X(t))] = −π(f) + bfπ(x∗),

and the right hand side is zero for by (ii).
By the definition ofVf and the Markov property we have for eachm ≥ 1,

Vf (X(m)) = EX(m)

[σx∗∑

t=0

f(X(t))
]

= E

[ τx∗∑

t=m

f(X(t)) | Fm

]
, on{τx∗ ≥ m}.

(49)

Moreover, the event{τx∗ ≥ m} is Fm measurable. That is, one can determine ifX(t) = x∗

for somet ∈ {1, . . . ,m} based onFm := σ{X(t) : t ≤ m}. Consequently, by the smoothing
property of the conditional expectation,

Ex[Vf (X(m))1{τx∗ ≥ m}] = E

[
1{τx∗ ≥ m}E

[ τx∗∑

t=m

f(X(t)) | Fm

]]

= E

[
1{τx∗ ≥ m}

τx∗∑

t=m

f(X(t))
]
≤ E

[ τx∗∑

t=m

f(X(t))
]

If Vf (x) < ∞, then the right hand side vanishes asm → ∞ by the Dominated Convergence
Theorem. This proves the second limit in (iii). ⊓⊔

Proposition 5.2. Suppose that the assumptions of Theorem5.1 hold: X is a x∗-irreducible,
positive recurrent Markov chain onX with π(f) < ∞. Suppose that there existsg ∈ L

f
∞ and

h ∈ L
Vf
∞ satisfying,

Ph = h − g.

Thenπ(g) = 0, so thath is a solution to Poisson’s equation with forcing functiong. Moreover,
for x ∈ Xf ,

h(x) − h(x∗) = Ex

[τx∗−1∑

t=0

g(X(t))
]
. (50)
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Proof. Let Mh(t) = h(X(t)) − h(X(0)) +
∑t−1

k=0 g(X(k)), t ≥ 1, Mh(0) = 0. ThenMh is a
zero-mean martingale,

E[Mh(t)] = 0, and E[Mh(t + 1) | Ft] = Mh(t), t ≥ 0.

It follows that the stopped process is a martingale,

E[Mh(τx∗ ∧ (r + 1)) | Fr] = Mh(τx∗ ∧ r), r ≥ 0.

Consequently, for anyr,

0 = Ex[Mh(τx∗ ∧ r)] = Ex

[
h(X(τx∗ ∧ r)) − h(X(0)) +

τx∗∧r−1∑

t=0

g(X(t))
]
.

On rearranging terms and subtractingh(x∗) from both sides,

h(x) − h(x∗) = Ex

[
[h(X(r)) − h(x∗)]1{τx∗ > r} +

τx∗∧r−1∑

t=0

g(X(t))
]
, (51)

where we have used the fact thath(X(τx∗ ∧ t)) = h(x∗) on{τx∗ ≤ t}.

Applying Theorem5.1(iii) and the assumption thath ∈ L
Vf
∞ gives,

lim sup
r→∞

∣∣∣Ex

[(
h(X(r)) − h(x∗)

)
1{τx∗ > r}

]∣∣∣

≤ (‖h‖Vf
+ |h(x∗)|) lim sup

r→∞
Ex[Vf (X(r))1{τx∗ > r}] = 0.

Hence by (51), for anyx ∈ Xf ,

h(x) − h(x∗) = lim
r→∞

Ex

[τx∗∧r−1∑

t=0

g(X(t))
]
.

Exchanging the limit and expectation completes the proof. This exchange is justified by the Dom-
inated Convergence Theorem wheneverVf (x) < ∞ sinceg ∈ L

f
∞. ⊓⊔
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