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1 Lyapunov functions and performance approximation

In this lecture we consider the application of Lyapunov functions to obtain performance bounds.
These lectures notes summarize the technical conclusions —they are not intended to be a complete
record of the Lecture #3 on Lyapunov functions.

Stochastic Lyapunov theory is couched in terms of thegeneratorD = P − I. That is, for any
functionV , the functionDV is defined as the mean increment,

DV (x) := E[V (X(t + 1)) − V (X(t)) | X(t) = x], x ∈ X. (1)

The notation is used so that we can more vividly display analogies between deterministic and
stochastic stability theory.
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Figure 1:V (X(t)) is decreasing, on average, outside of the setS.

A basic stochastic Lyapunov bound isPoisson’s inequality: for a functionV : X → R+, a
functionc : X → R+, and a constantη < ∞,

DV (x) ≤ −c(x) + η, x ∈ X . (2)

The functionc is usually interpreted as a cost function on the state space.
Typically, it is assumed thatc(x) is large for “large”x, such as a norm. In this case the Poisson

inequality implies thatV (X(t)) decreases on average wheneverX(t) is large. This is illustrated
in Figure1, in which the set referred to in the caption isS = {x : c(x) ≤ η}.

1.1 Lyapunov stability theory

First let’s review some key aspects of Lyapunov’s theory of nonlinear differential equations. Con-
sider the dynamical system onX = R

2 defined by the nonlinear state space model,

d
dt
x(t) = f(x(t)), x(0) = x ∈ X. (3)
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The functionf : R2 → R
2 is assumed to be continuous. It is also assumed that there is aunique

equilibriumx∗. Hencef(x∗) = 0, andf(x) 6= 0 for x 6= 0.
A functionV : X → R is a Lyapunov function if the following conditions hold:

(i) V is non-negative valued, differentiable, and its derivative∇V is continuous.

(ii) It is coercive: lim
‖x‖→∞

V (x) = ∞.

(iii) For any solutionx, wheneverx(t) 6= x∗,

d
dt
V (x(t)) < 0.

Naturally, d
dt
V (x(t)) = 0 if x(t) = x∗ since in this caseV (x(t+ s)) = V (x∗) for all s ≥ 0.

If a Lyapunov function exists, thenx∗ is asymptotically stable: Hence, in particular,x(t) →
x∗ ast → ∞ for each initial condition.1

This conclusion can be refined to obtain performance bounds.The drift condition (iii) can be
expressed in functional form,

〈∇V (x), f(x)〉 < 0, x 6= x∗.

Suppose thatc : X → R+ is a cost function that measures deviation fromx∗. Assume thatc(x∗) =
0, and thatc(x) > 0 for x 6= x∗. Suppose moreover thatV andc satisfy,

〈∇V (x), f(x)〉 ≤ −c(x), x ∈ X.

Returning to the differential representation, this implies that for each initial condition

d
dt
V (x(t)) ≤ −c(x(t)), t ≥ 0.

For a given time-horizonT > 0, we obtain by the fundamental theorem of calculus,

−V (x(0)) ≤ V (x(T ))− V (x(0)) =

∫ T

0

(

d
dt
V (x(t))

)

dt

≤ −

∫ T

0

c(x(t)), T ≥ 0.

On lettingT → ∞ we obtain a bound on the total cost,
∫ ∞

0

c(x(t)) ≤ V (x), x(0) = x ∈ X.

In this part of the course we generalize these concepts to Markovian models. We will also
directly apply the deterministic theory to obtain insight on the structure of solutions to Poisson’s
equation or inequality. One approach is to consider afluid modelassociated with the Markov
chain. In one formulation, this is expressed as the O.D.E. (3) in which f is chosen to be thedrift
vector fielddefined by

∆(x) := E[X(t+ 1)−X(t) | X(t) = x], x ∈ X. (4)

1Asymptotic stability also requires that this convergence be uniform over the starting pointx(0) in any bounded
subset ofX.
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1.2 Average cost

Let η(x) denote the mean average cost,

η(x) = lim
n→∞

1

n

n−1
∑

t=0

E[c(X(t)) | X(0) = x] ,

assuming the limit exists. The average cost is independent of x in most cases to be considered in
the course. Whenc is a cost function, then the average cost is a natural performance metric for
evaluation of the Markov chain.

The conditional expectation can be expressed in operator-theoretic notation asP tc (x), so that

η(x) = lim
n→∞

1

n

n−1
∑

t=0

P tc (x) .

This admits a simple bound under Poisson’s inequality (2).
The bound (2) can be written,

PV ≤ V − c+ η (5)

Applying P to both sides then givesP 2V ≤ PV − Pc+ Pη, and sinceη is constant,

P 2V ≤ PV − Pc+ η ≤ V − c− Pc+ 2η

By repeated multiplication byP we conclude that, for anyn,

PnV ≤ V + nη −

n−1
∑

t=0

P tc

On rearranging terms, and using the assumption thatV ≥ 0, we obtain the following:

Proposition 1.1. Suppose that(2) holds withV ≥ 0 everywhere. Then, the following transient
bound holds for eachn ≥ 1, and eachx ∈ X:

1

n

n−1
∑

t=0

P tc (x) ≤ η +
1

n
V (x)

Consequently, the average-cost bound also holds,η(x) ≤ η.

We will see that, under very general conditions, the average-cost bound given in Proposi-
tion 1.1 is tight: There is a functionh : X → R+ satisfyingDh (x) = −c(x) + η(x) for each
x.

Example: The scalar linear state space model Consider the scalar model,

X(t+ 1) = αX(t) + E(t+ 1), t ≥ 0, (6)

whereE i.i.d., with zero mean and finite second momentσ2
e . The cost function is the quadratic,

c(x) = 1

2
x2.
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Let V (x) = 1

2
Dx2, with D > 0. We then have,

DV (x) = E[V (X(t+ 1))− V (X(t)) | X(t) = x]

= 1

2
DE[(αx + E(1))2 − x2]

= 1

2
D(α2 − 1)x2 + 1

2
Dσ2

e

(7)

Provided|α| < 1, we can setD = (1 − α2)−1 in the definition ofV to obtain a solution to
Poisson’sequationwith forcing functionc,

DV (x) = −c(x) + η (8)

with η = 1

2
(1− α2)−1σ2

e .
It follows from Proposition1.1 thatη(x) ≤ η for eachx. In fact, the steps above show that

E[c(X(t))] → η for each initial condition, so that we have equality:η(x) ≡ η.
Note that ifE is Gaussian thenx(t) has a Gaussian distribution for eacht. In this case it

is clear thatP t(x, · ) converges to a GaussianN(0, σ2
∞) distribution ast → ∞, with σ2

∞ =
(1− α2)−1σ2

e .

1.3 Discounted cost

In economics and operations research applications the discounted cost criterion is typically fa-
vored. Given a discount parameterβ ∈ (0, 1), the discounted cost from initial conditionx is
defined as the weighted sum,

hβ(x) =
∞
∑

t=0

βt
E[c(X(t)) | X(0) = x] .

Once again this has the operator-theoretic form,

hβ =

∞
∑

t=0

βtP tc . (9)

If c is non-negative valued then the lower boundhβ(x) ≥ c(x) holds, so that the discounted cost is
unbounded whenever this is true ofc. And, once again, we obtain a bound onhβ under Poisson’s
inequality.

The bound (2), expressed in the form (5), gives

βPV ≤ V − g + βη (10)

whereg = (1− β)V + βc, a convex combination of the Lyapunov function and the cost function.
Applying βP to each side gives,

(βP )2V ≤ βPV − βPg + β2η

and then using (10),
(βP )2V ≤ V − g − βPg + βη + β2η
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As in the average-cost problem we obtain by induction,

(βP )nV ≤ V −
n−1
∑

t=0

βtP tg + η

n−1
∑

t=0

βt+1

From the definitiong = (1− β)V + βc we obtain,

Proposition 1.2. If (2) holds withV ≥ 0 everywhere then for eachβ ∈ (0, 1) and for each
x ∈ X:

∞
∑

t=0

βt
(

βP tc (x) + (1− β)P tV (x)
)

≤ V (x) +
β

1− β
η. (11)

Consequently, the discounted cost satisfieshβ(x) ≤ V (x) + η(1− β)−1 for eachx.

The final bound deserves some additional explanation. Usingthe fact thatV ≥ 0 we can drop
all but one term involvingV on the left hand side of (11) to obtain,

(1− β)V (x) + β

∞
∑

t=0

βtP tc (x) ≤ V (x) +
β

1− β
η.

The bound onhβ(x) follows on adding(1 − β)V (x) to each side, and then dividing each side of
the resulting bound byβ.

The bound obtained in Proposition1.2 is not tight in general. To see why, note that the
functionhβ(x) solves the dynamic programming equation,

hβ(x) = c(x) + βE[hβ(X(1)) | X(0) = x] (12)

or, in operator notation,hβ = c + βPhβ . The proof of Proposition1.2 can be interpreted as an
approximation to this equation based on a scaled multiple ofV .

Example: Discounted cost for the scalar linear state space model Poisson’s equation (8) can
be written,

PV (x) = V (x)− c(x) + η .

Proposition1.1gives the boundhβ ≤ V + η(1− β)−1, or

hβ(x) ≤
1

2
(1− α2)−1

(

x2 + (1− β)−1σ2
e

)

(13)

To computehβ we apply the dynamic programming equation (12). LetV (x) = Aβ+
1

2
Dβx

2,
with Aβ ,Dβ constants to be chosen. From (7) we have,

DV = −(1− α2)(V −Aβ) +
1

2
Dβσ

2
e

or PV ≤ α2V + (1− α2)Aβ + 1

2
Dβσ

2
e . Scaling byβ and addingc to each side gives,

c+ βPV = c+ β
(

α2V + (1− α2)Aβ + 1

2
Dβ

)
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Or, re-introducing the quadratic expressions,

c(x) + βPV (x) = 1

2
(1 + βα2Dβ)x

2 + β(1
2
Dβσ

2
e +Aβ)

To solve the dynamic programming equation we require that the right hand side coincide withV .
This requires the solution of two equations:

1 + βα2Dβ = Dβ β(1
2
Dβσ

2
e +Aβ) = Aβ

Solving forDβ andAβ gives,

hβ(x) = Aβ + 1

2
Dβx

2 = 1

2
(1− βα2)−1

(

x2 + βσ2
e

)

In particular, the bound (13) does indeed hold.

Next steps: Finer conclusions based on a Lyapunov function.
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