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Handout: Spectral Densities and Linear Systems

Wide sense stationary processes Let u = {uk : k ≥ 0} be a (wide sense) stationary process, so
that the following limits hold.

µ := lim
N→∞

1

N

N
∑

k=1

u(k) = E[u(0)]; R(n) := lim
N→∞

1

N

N
∑

k=1

(u(k)− µ)(u(k + n)− µ) = E[u(0)u(n)].

Any signal u of the form u(k) =
∑m

1 αi sin(ωik + φi) is WSS, but this family of signals is far larger
than merely sums of sinusoids.

We call R the autocorrelation sequence of u. The spectral density is defined as

f(ω) = lim
N→∞

N
∑

k=−N

R(k)e−jkω

= the discrete time Fourier transform of R(n)

The spectral density satisfies numerous special properties:

(i) periodic, with period 2π;

(ii) even, f(ω) = f(−ω) for all ω;

(iii) positive valued, f(ω) ≥ 0 for all ω.

f (ω)

-π
ω

π

(iv) R(n) =
1

2π

∫ π

−π

ejnωf(ω) dω (from the inversion formula for Fourier transforms)

Hence R(n) is represented by its spectral density. The process u can also be represented through a
random spectral process ξ:

(v) u(n) =

∫ π

−π

ejnω dξ(ω), n ≥ 0.

ξ(ω)

-π

ω

π

Interpretation: The process u is approximated by a random sum of sinusoids:

u(n) ≈

N
∑

k=−N+1

γke
jnωk , where γk = ξ(ωk)− ξ(ωk−1), and ωk = kπ/N .

Properties of the spectral process ξ: For ω1 < ω2 < ω3,

Orthoganl increments E[(ξ(ω3)− ξ(ω2))(ξ(ω2)− ξ(ω1))] = 0.

Bounded power E[|ξ(ω2)− ξ(ω1)|
2] =

1

2π

∫ ω2

ω1

f(τ) dτ .



Simple examples of autocorrelation and spectral density functions Note: In these examples,
the mean is µ = 10 6= 0. Hence, the spectral density possesses mass at the origin, corresponding to a
non-zero DC component in the signal z. This will be subtracted, so that the mean of z is zero.

Consider the two processes,

z(t) = 10 + u(t)− u(t− 1), z(t) = 10 + u(t)− u(t− 1),

where u is a sequence of uncorrelated, random Normal variables with mean zero and variance one.
Below are sample paths from the two models

Model 1:  z(k) = 10 + u(k) + u(k-1) Model 2:  z(k) = 10 + u(k) - u(k-1)  

t

z(k)

t

z(k)

Using the definition, R(k) = E[(z(t) − µ)(z(t + k) − µ)], where µ = E[z(t)] = 10, we can compute the
respective autocovariances:

R(k) =







2.0 if k = 0;
1.0 if |k| = 1;
0 if |k| ≥ 2.

R(k) =







2.0 if k = 0;
−1.0 if |k| = 1;
0 if |k| ≥ 2.

Using this information we may compute the spectral densities,

Model 1 Model 2

-π

f (ω

ω ω

ω) = 2(1+cos( )) f (ω ω) = 2(1 - cos( ))

π -π π

The first model possesses a zero at the frequency ω = ±π, while the second model possesses a zero at
the DC value ω = 0. The relatively smooth behavior of the sample path for the first model is reflected
in the spectral densities.



Linear stochastic systems Consider the SISO system

H(jω)
u(t) y(t)

The transfer function H is the Fourier transform of the impluse response:

H(ejω) =

∞
∑

n=0

hne−jωn

The output y is then

y(t) =

∞
∑

n=0

hnu(t− n)

=

∞
∑

n=0

hn

∫ π

−π

ejω(t−n) dξu(ω)

=

∫ π

−π

ejωtH(ejω) dξu(ω)

We thus have the formula dξy(ω) = H(ejω)dξu(ω). This actually means that

ξy(ω) =

∫ ω

−π

H(ejω) dξu(ω).

Given this formula, we can also compute the spectral density fy:

fy(ω) = |H(ejω)|2fu(ω)

So, the linear system transforms signals as one would expect: frequencies are amplified or attenuated,
depending on the magnitude of the frequency response. Note however that all phase information is lost
in the spectral density.


