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ECE 555 Control of Stochastic Systems Fall 2005

Handout: Reinforcement learning

In this handout we analyse reinforcement learning algorithms for Markov decision processes. The
reader is referred to [2, 10] for a general background of the subject and to other references listed below
for further details. This handout is based on [5].

Stochastic approximation In lecture on November 29th we considered the general stochastic
approximation recursion,

θ(n+ 1) = θ(k) + an[g(θ(n)) + ∆(n+ 1)], n ≥ 0, θ(0) ∈ R
d. (1)

Here we provide a summary of the main results from [5].
Associated with the recursion (1) are two O.D.E.s,

d
dt
x(t) = g(x(t)) (2)

d
dt
x(t) = g∞(x(t)), (3)

where g∞ : R
d → R

d is the scaled function, lim
r→∞

r−1g(rx) = g∞(x), x ∈ R
d. We assumed in lecture

that this limit exists, along with some additional properties,

(A1) The function g is Lipschitz, and the limit g∞(x) exists for each x ∈ R
d. Furthermore, the

origin in R
d is an asymptotically stable equilibrium for the O.D.E. (3).

(A2) The sequence {∆(n) : n ≥ 1} is a martingale difference sequence with respect to Fn =
σ(θ(i),∆(i), i ≤ n). Moreover, for some σ2

∆ <∞ and any initial condition θ(0) ∈ R
d,

E[‖∆(n + 1)‖2 | Fn] ≤ σ2
∆(1 + ‖θ(n)‖2), n ≥ 0.

The sequence {an} is deterministic and is assumed to satisfy one of the following two assumptions.
Here TS stands for ‘tapering stepsize’ and BS for ‘bounded stepsize’.

(TS) The sequence {an} satisfies 0 < an ≤ 1, n ≥ 0, and

∑

n

an = ∞,
∑

n

a2
n <∞.

(BS) The sequence {an} is constant: an ≡ a > 0 for all n.

Stability of the O.D.E. (3) implies stability of the algorithm:

Theorem 1 Assume that (A1), (A2) hold. Then, for any initial condition θ(0) ∈ R
d,

(i) Under (TS), sup
n

‖θ(n)‖ <∞ a.s..

(ii) Under (BS) there exists a0 > 0, b0 <∞, such that for any fixed a ∈ (0, a0],

lim sup
n→∞

E[‖θ(n)‖2] ≤ b0.

⊓⊔



For the TS model we have convergence when the O.D.E. (2) has a stable equilibrium point:

Theorem 2 Suppose that (A1), (A2), (TS) hold and that the O.D.E. (2) has a unique globally asymp-
totically stable equilibrium θ∗. Then θ(n) → θ∗ a.s. as n→ ∞ for any initial condition θ(0) ∈ R

d.

We can also obtain bounds for the fixed stepsize algorithm. Let e denote the error sequence,

e(n) = ‖θ(n) − θ∗‖, n ≥ 0.

Theorem 3 Assume that (A1), (A2) and (BS) hold, and suppose that (2) has a globally asymptotically
stable equilibrium point θ∗. Then, for a ∈ (0, a0], and for every initial condition θ(0) ∈ R

d,

(i) For any ε > 0, there exists b1 = b1(ε) <∞ such that

lim sup
n→∞

P(e(n) ≥ ε) ≤ b1a.

(ii) If θ∗ is a globally exponentially asymptotically stable equilibrium for the O.D.E. (2), then
there exists b2 <∞ such that,

lim sup
n→∞

E[e(n)2] ≤ b2a.

⊓⊔

Suppose that the increments of the model take the form,

g(θ(n)) + ∆(n+ 1) = f(θ(n), N(n+ 1)), n ≥ 0, (4)

where N is an i.i.d. sequence on R
q. In this case, for the BS model, the stochastic process θ is a (time-

homogeneous) Markov chain. Assumptions (5) and (6) below are required to establish ψ-irreducibility:

There exists a n∗ ∈ R
q with f(θ∗, n∗) = 0, and a continuous density

p : R
q → R+ satisfying p(n∗) > 0 and

P(N(1) ∈ A) ≥

∫

A

p(z)dz, A ∈ B(Rq);
(5)

The pair of matrices (A,B) is controllable with

A =
∂

∂x
f(θ∗, n∗) and B =

∂

∂n
f(θ∗, n∗),

(6)

Under Assumptions (5) and (6) there exists a neighborhood B(ǫ) of θ∗ that is small in the sense that
there exists a probability measure ν on R

d and δ > 0 such that

P d(x,A) := P{θ(r) ∈ A | θ(0) = x} ≥ δν(A), x ∈ B(ǫ)

Stability of the O.D.E. (2) can be used to show that the resolvent satisfies,

R(x,B(ǫ)) :=

∞∑

k=0

2−k−1P k(x,B(ǫ)) > 0, x ∈ R
d,

which is equivalent to ψ-irreducibility [9].



Theorem 4 Suppose that (A1), (A2), (5), and (6) hold for the Markov model satisfying (4) with
a ∈ (0, a0]. Then we have the following bounds:

(i) There exist positive-valued functions A0 and ε0 of a, and a constant A1 independent of a,
such that

P{e(n) ≥ ε | θ(0) = x} ≤ A0(a) +A1(‖x‖
2 + 1) exp(−ε0(a)n), n ≥ 0, a ∈ (0, a0].

The functions satisfy A0(a) ≤ b1a and ε0(a) → 0 as a ↓ 0.

(ii) If in addition the O.D.E. (2) is exponentially asymptotically stable, then the stronger bound
holds,

E[e(n)2 | θ(0) = x] ≤ B0(a) +B1(‖x‖
2 + 1) exp(−ǫ0(a)n), n ≥ 0, a ∈ (0, a0],

where B0(a) ≤ b2a, ε0(a) → 0 as a ↓ 0, and B1 is independent of a.

Markov decision processes We now review general theory for Markov decision processes. It
is assumed that the state process X = {X(t) : t ∈ Z+} takes values in a finite state space X =
{1, 2, · · · , s}, and the control sequence U = {U(t) : t ∈ Z+} takes values in a finite action space
U = {u0, · · · , ur}. The controlled transition probabilities are denoted Pu(i, j) for i, j ∈ X, u ∈ U. We
are most interested in stationary policies of the form U(t) = φ(X(t)), where the feedback law φ is a
function φ : X → U.

Let c : X ×U → R be the one-step cost function, and consider first the infinite horizon discounted
cost control problem of minimizing over all admissible U the total discounted cost

hU (i) = E

[ ∞∑

t=0

(1 + γ)−t−1c(X(t), U(t)) | X(0) = i
]
,

where γ ∈ (0,∞) is the discount factor. The minimal value function is defined as

h∗(i) = min
U
hU (i),

where the minimum is over all admissible control sequences U . The function h∗ satisfies the dynamic
programming equation

(1 + γ)h∗(i) = min
u

[
c(i, u) +

∑

j

Pu(i, j)h∗(j)
]
, i ∈ X,

and the optimal control minimizing h is given as the stationary policy defined through the feedback
law φ∗ given as any solution to

φ∗(i) := arg min
u

[
c(i, u) +

∑

j

Pu(i, j)h∗(j)
]
, i ∈ X.

The value iteration algorithm is an iterative procedure to compute the minimal value function.
Given an initial function h0 : X → R+ one obtains a sequence of functions {hn} through the recursion

hn+1(i) = (1 + γ)−1 min
u

[
c(i, u) +

∑

j

Pu(i, j)hn(j)
]
, i ∈ X, n ≥ 0. (7)



This recursion is convergent for any initialization h0 ≥ 0.
The value iteration algorithm is initialized with a function h0 : X → R+. In contrast, the policy

iteration algorithm is initialized with a feedback law φ0, and generates a sequence of feedback laws
{φn : n ≥ 0}. At the nth stage of the algorithm a feedback law φn is given, and the value function hn

is computed. Interpreted as a column vector in R
s, the vector hn satisfies the equation

((1 + γ)I − Pn)hn = cn (8)

where the s × s matrix Pn is defined by Pn(i, j) = Pφn(i)(i, j), i, j ∈ X, and the column vector cn is
given by cn(i) = c(i, φn(i)), i ∈ X. Given hn, the next feedback law φn+1 is then computed via

φn+1(i) = arg min
u

[
c(i, u) +

∑

j

Pu(i, j)hn(j)
]
, i ∈ X. (9)

Each step of the policy iteration algorithm is computationally intensive for large state spaces since
the computation of hn requires the inversion of the s× s matrix (1 + γ)I − Pn to solve (8). For each
n, this can be solved using the ‘fixed-policy’ version of value iteration,

VN+1(i) = (1 + γ)−1[PnVN (i) + cn], i ∈ X, N ≥ 0, (10)

where V0 ∈ R
s is given as an initial condition. Then VN → hn, the solution to (8), at a geometric rate

as N → ∞.

In the average cost optimization problem one seeks to minimize over all admissible U ,

ηU (x) := lim sup
n→∞

1

n

n−1∑

t=0

Ex[c(X(t), U(t))]. (11)

The policy iteration and value iteration algorithms to solve this optimization problem remain un-
changed with a few exceptions. One is that the constant γ must be set equal to zero in equations (7)
and (10). Secondly, in the policy iteration algorithm the value function hn is replaced by a solution
to Poisson’s equation

Pnhn = hn − cn + ηn, (12)

where ηn is the steady state cost under the policy φn. The computation of hn and ηn again involves
matrix inversions via

πn(I − Pn + ee′) = e′, ηn = πncn, (I − Pn + ee′)hn = cn,

where e ∈ R
s is the column vector consisting of all ones, and the row vector πn is the invariant

probability for Pn. The introduction of the outer product ensures that the matrix (I − Pn + ee′) is
invertible, provided that the invariant probability πn is unique.

Q-learning If we define Q-values via

Q∗(i, u) = c(i, u) +
∑

j

Pu(i, j)h∗(j), i ∈ X, u ∈ U, (13)

then h∗(i) = minuQ
∗(i, u) and the matrix Q∗ satisfies

Q∗(i, u) = c(i, u) + (1 + γ)−1
∑

j

Pu(i, j)min
v
Q∗(j, v), i ∈ X, u ∈ U.



The matrix Q∗ can be computed using the equivalent formulation of value iteration,

Qn+1(i, u) = c(i, u) + (1 + γ)−1
∑

j

Pu(i, j)
(
min

v
Qn(j, v)

)
, i ∈ X, u ∈ U, n ≥ 0, (14)

where Q0 ≥ 0 is arbitrary.
If transition probabilities are unknown so that value iteration is not directly applicable, one may

apply a stochastic approximation variant known as the Q-learning algorithm of Watkins [11, 12]. This
is defined through the recursion

Qn+1(i, u) = Qn(i, u) + an

[
(1 + γ)−1 min

v
Qn(Ξn+1(i, u), v) + c(i, u) −Qn(i, u)

]
, i ∈ X, u ∈ U,

where Ξn+1(i, u) is an independently simulated X-valued random variable with law Pu(i, ·).
Making the appropriate correspondences with the stochastic approximation theory surrounding

(1), we have θ(n) = Qn ∈ R
s×(r+1) and the function g : R

s×(r+1) → R
s×(r+1) is defined as follows.

Define F : R
s×(r+1) → R

s×(r+1) as F (Q) = [Fiu(Q)]i,u via,

Fiu(Q) = (1 + γ)−1
∑

j

Pu(i, j)min
v
Q(j, v) + c(i, u).

Then g(Q) = F (Q) −Q and the associated O.D.E. is

d
dt
Q = F (Q) −Q := g(Q). (15)

The map F : R
s×(r+1) → R

s×(r+1) is a contraction w.r.t. the max norm ‖ · ‖∞,

‖F (Q1) − F (Q2)‖∞ ≤ (1 + γ)−1‖Q1 −Q2‖∞, Q1, Q2 ∈ R
s×(r+1).

Consequently, one can show that with Q̃ = Q−Q∗,

d
dt
‖Q̃‖∞ ≤ −γ(1 + γ)−1‖Q̃‖∞,

which establishes global asymptotic stability of its unique equilibrium point θ∗ [7]. Assumption (A1)
holds, with the (i, u)-th component of g∞(Q) given by

(1 + γ)−1
∑

j

Pu(i, j)min
v
Q(j, v) −Q(i, u), i ∈ X, u ∈ U.

This also is of the form g∞(Q) = F∞(Q) − Q where F∞( · ) is an ‖ · ‖∞- contraction, and thus the
origin is asymptotically stable for the O.D.E. (3).

We conclude that Theorems 1–4 hold for the Q-learning model.

Adaptive critic algorithm Next we consider the adaptive critic algorithm, which may be consid-
ered as the reinforcement learning analog of policy iteration. There are several variants of this, one
of which, taken from [8], is as follows. The algorithm generates a sequence of approximations to h∗

denoted {hn : n ≥ 0}, interpreted as a sequence of s-dimensional vectors. Simultaneously, it generates
a sequence of randomized policies denoted {φn}.

At each time n the following random variables are constructed independently of the past:

(i) For each i ∈ X, Ωn(i) is a U-valued random variable independently simulated with law φn(i);



(ii) For each i ∈ X, u ∈ U, Ξa
n(i, u) and Ξb

n(i, u) are independent X-valued random variables with
law Pu(i, · ).

For 1 ≤ ℓ ≤ r we let e
ℓ is the unit r-vector in the ℓ-th coordinate direction. We let Γ( · ) denote the

projection onto the simplex {x ∈ R
r
+ :

∑
i xi ≤ 1}.

For i ∈ X the algorithm is defined by the pair of equations,

hn+1(i) = hn(i) + bn
[
(1 + γ)−1[c(i,Ωn(i)) + hn(Ξa

n(i,Ωn(i)))] − hn(i)
]
, (16)

φ̂n+1(i) = Γ
{
φ̂n(i) + an

r∑

ℓ=1

(
[c(i, u0) + hn(Ξb

n(i, u0))] − [c(i, uℓ) + hn(Ξb
n(i, uℓ))]

)
e
ℓ
}
. (17)

For each i, n, φn(i) = φn(i, · ) is a probability vector on U defined in terms of φ̂n(i) = [φ̂n(i, 1), . . . , φ̂n(i, r)]
as follows,

φn(i, uℓ) =

{
φ̂n(i, ℓ) ℓ 6= 0;

1 −
∑

j 6=0 φ̂
n(i, j) ℓ = 0.

This is an example of a two time-scale algorithm: The sequences {an}, {bn} are assumed to satisfy

lim
n→∞

an

bn
= 0,

as well as the usual conditions for vanishing gain algorithms,

∑

n

an =
∑

n

bn = ∞,
∑

n

(a2
n + b2n) <∞.

To see why this is based on policy iteration, recall that policy iteration alternates between two
steps: One step solves the linear system of equation (8) to compute the fixed-policy value function
corresponding to the current policy. We have seen that solving (8) can be accomplished by performing
the fixed-policy version of value iteration given in (10). The first step (16) in the above iteration is
indeed the ‘learning’ or ‘simulation-based stochastic approximation’ analog of this fixed-policy value
iteration. The second step in policy iteration updates the current policy by performing an appropriate
minimization. The second iteration (17) is a particular search algorithm for computing this minimum
over the simplex of probability measures on U.

The different choices of stepsize schedules for the two iterations (16), (17) induces the ‘two time-
scale’ effect discussed in [6]. Thus the first iteration sees the policy computed by the second as nearly
static, thus justifying viewing it as a fixed-policy iteration. In turn, the second sees the first as almost
equilibrated, justifying the search sheme for minimization over U.

The boundedness of {φ̂n} is guaranteed by the projection Γ( · ). For {hn}, the fact that bn = o(an)
allows one to treat φ̂n(i) as constant, say φ̄(i) [8]. The appropriate O.D.E. then turns out to be

d
dt
x = F (x) − x := g(x) (18)

where F : R
s → R

s is defined by:

Fi(x) = (1 + γ)−1
∑

ℓ

φ̄(i, uℓ)
[∑

j

Puℓ
(i, j)xj + c(i, uℓ)

]
, i ∈ X.



Once again, F ( · ) is an ‖ · ‖∞-contraction and it follows that (18) is globally asymptotically stable.
The limiting function g∞(x) is again of the form g∞(x) = F∞(x) − x with F∞(x) defined so that its
i-th component is

(1 + γ)−1
∑

ℓ

φ̄(i, uℓ)
∑

j

Puℓ
(i, j)xj .

We see that F∞ is also a ‖ · ‖∞- contraction and the global asymptoyic stability of the origin for the
corresponding limiting O.D.E. follows [7].

Average cost optimal control For the average cost control problem we impose the additional
restriction that the chain X has a unique invariant probability measure under any stationary policy
so that the steady state cost (11) is independent of the initial condition.

For the average cost optimal control problem the Q-learning algorithm is given by the recursion

Qn+1(i, u) = Qn(i, u) + an

(
min

v
Qn(Ξa

n(i, u), v) + c(i, u) −Qn(i, u) −Qn(i0, u0)
)
,

where i0 ∈ X, a0 ∈ U are fixed a-priori. The appropriate O.D.E. now is (15) with F ( · ) redefined as
Fiu(Q) =

∑
j Pu(i, j)minv Q(j, v) + c(i, u) −Q(i0, u0). The global asymptotic stability for the unique

equilibrium point for this O.D.E. has been established in [1]. Once again this fits our framework with
g∞(x) = F∞(x)−x for F∞ defined the same way as F , except for the terms c(·, ·) which are dropped.
We conclude that (A1) and (A2) are satisfied for this version of the Q-learning algorithm.

In [8], three variants of the adaptive critic algorithm for the average cost problem are discussed,
differing only in the {φ̂n} iteration. The iteration for {hn} is common to all and is given by

hn+1(i) = hn(i) + bn[c(i,Ωn(i)) + hn(Ξa
n(i,Ωn, (i))) − hn(i) − hn(i0)], i ∈ X

where i0 ∈ X is a prescribed fixed state. This leads to the O.D.E. (18) with F redefined as

Fi(x) =
∑

ℓ

φ̄(i, uℓ)
(∑

j

puℓ
(i, j)xj + c(i, uℓ)

)
− xi0, i ∈ X.

The global asymptotic stability of the unique equilibrium point of this O.D.E. has been established in
[3, 4]. Once more, this fits our framework with g∞(x) = F∞(x) − x for F∞ defined just like F , but
without the c(·, ·) terms.
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Handout: More on reinforcement learning: Value function approximation

In this handout we introduce methods to approximate the value function for a given policy for appli-
cation reinforcement learning algorithms for Markov decision processes. The reader is again referred
to [2, 8] for a general background. More detailed treatments of temporal difference (TD) learning and
value function approximation can be found in [9, 7, 6, 1].

Throughout this handout we let X denote a Markov chain without control on a state space X with
transition matrix P , and unique invariant distribution π. A cost function c : X → R is given, and our
goal is to estimate the solution to the DP equation,

Ph∗ − (1 + γ)h∗ + c = 0. (1)

We restrict to the finite state space case with X = {1, . . . , s} to simplify notation.
The issues addressed in this handout are summarized in the following remark from [5] in discussing

practical issues in the implementation of MDP methods:

A large state space presents two major issues. The most obvious one is the storage problem,
as it becomes impractical to store the value function (or optimal action) explicitly for each
state. The other is the generalization problem, assuming that limited experience does not
provide sufficient data for each and every state.

These issues are each addressed by constructing an approximate solution to (1) over a parameterized
set of functions.

Linear approximations Suppose that {ψi : 1 ≤ i ≤ q} are functions on X. We seek a best fit
among a set of parameterized approximations,

hr(x) := rTψ(x) =

q∑

i=1

riψi(x), x ∈ X.

To choose r we first define a particular metric to describe the distance between hr and h∗. There are
many ways to do this - an L2 setting leads to an elegant solution. In this finite state space setting
we view hr and h∗ as column vectors in R

s. For a given s × s matrix M we define the L2 error
‖hr − h∗‖2

M = (hr − h∗)TM(hr − h∗). We will focus on the special case M = diag(π(1), . . . , π(s)) so
that the L2 error can be expressed,

‖hr − h∗‖2
M = Eπ[(hr(X(k)) − h∗(X(k)))2] = Eπ[(rTψ(X(k)) − h∗(X(k)))2].

The derivative with respect to r has the probabilistic interpretation,

∇r‖h
r − h∗‖2

M = 2Eπ[(rTψ(X(k)) − h∗(X(k)))ψ(X(k))], (2)

and setting this equal to zero gives the optimal value,

r∗ = A−1b, where A = Eπ[ψ(X)ψ(X)T ], b = Eπ[h∗(X)ψ(X)].

We assume henceforth that A > 0.



The steepest descent algorithm to compute r∗ is given by,

d
dr
r(t) = −a∇r‖h

r − h∗‖2
M = −a[Ar + b], t ≥ 0, (3)

where a > 0 is a gain. Although this leads to a natural stochastic approximation algorithm, the
function h∗ appearing in the definition of b is not known. Given the representation h∗ = Rγc := [(1 +
γ)I − P ]−1c, we could resort to the pair of O.D.E.s,

d
dt
r = −Ar + π(hψ)

d
dt
h = Ph− (1 + γ)h+ c

(4)

This is exponentially asymptotically stable when M > 0. Since M = diag(π), this amounts to
irreducibility of X . The following S.A. recursion follows naturally

r(k + 1) − r(k) = ak

s∑

i=1

I{X(k) = i}[h(i; k) − ψT(i)r(k)]ψ(i)

h(i; k + 1) − h(i; k) = akI{X(k) = i}[h(X(k + 1); k) − (1 + γ)h(i; k) + c(i)], i ∈ X,

(5)

where {ak} is a vanishing gain sequence. The corresponding ODE is almost (4) except that the h
equation is modified,

d
dt
h(i; t) = π(i)[Ph (t; i) − (1 + γ)h(t; i) + c(i)], i ∈ X.

Since this evolves autonomously and is linear, analysis of the two coupled ODEs is straightforward.
The algorithm (5) may remain too complex for application in large problems. Observe that it is

necessary to maintain estimates of h∗(i) for each i ∈ X, which means that the memory requirements
are linear in the size of X. A simple remedy can be found through a closer look at the derivative
equation (2).

L2 theory The right hand side of (2) can be written, d
dr
‖hr − h∗‖2

M = 2π(fg), with f = hr − h∗

and g = ψ. The resolvent Rγc will be transformed in the representation h∗ = Rγc using some duality
theory.

Consider the Hilbert space L2(π) consisting of real-valued functions on X whose second moment
under π is finite. This simply means the function is finite-valued in the finite state space case. For
f, g ∈ L2(π) we define the inner product,

〈f, g〉 = π(fg).

The adjoint R̃γ of the resolvent is characterized by the defining set of equations,

〈Rγf, g〉 = 〈f, R̃γg〉, f, g ∈ L2(π).

To construct the adjoint we obtain a sample path representation for 〈Rγf, g〉. Let X denote a sta-
tionary version of the Markov chain on the two sided interval. We have,

〈Rγf, g〉 = E

[( ∞∑

t=0

(1 + γ)−t−1P tf (X(0))
)
g(X(0))

]

We have by the smoothing property of the conditional expectation,

E[P tf (X(0))g(X(0))] = E
[
E[f(X(t)) | X(0)]g(X(0))

]
= E[f(X(t))g(X(0))]



and then applying stationarity of X and the smoothing property once more,

E[P tf (X(0))g(X(0))] = E[f(X(0))g(X(−t))] =
∑

π(x)f(x)E[g(X(−t)) | X(0) = x].

Consequently,

〈Rγf, g〉 =

∞∑

t=0

(1 + γ)−t−1
E[f(X(0))g(X(−t))] = 〈f, R̃γg〉,

where the adjoint is expressed,

R̃γg (x) =
∞∑

t=0

(1 + γ)−t−1
E[g(X(−t)) | X(0) = x]. (6)

Applying the adjoint equation to the definition of b given below (2) gives,

b = Eπ[h∗(X(k))ψ(X(k))] = Eπ[Rγc (X(k))ψ(X(k))] = Eπ[c(X(k))R̃γ ψ(X(k))]

Based on (6) we obtain,

b =
∞∑

t=0

(1 + γ)−t−1
Eπ[c(X(k))ψ(X(k − t))]. (7)

This final representation (7) is the basis of TD learning.

Temporal difference learning Returning to (2) we have,

∇r‖h
r − h∗‖2

M = 2〈hr − h∗, ψ〉 = 2〈hr −Rγc, ψ〉

and writing hr −Rγc = Rγ [(1 + γ)hr − Phr − c] we obtain from the adjoint equation,

∇r‖h
r − h∗‖2

M = 2
〈
(1 + γ)hr − Phr − c, R̃γψ

〉
(8)

Written as an expectation we obtain

∇r‖h
r − h∗‖2

M = 2E
[
[(1 + γ)hr(X(k)) − hr(X(k + 1)) − c(X(k))][R̃γψ (X(k))]

]
(9)

We now have sufficient motivation to construct the TD learning algorithm based on the O.D.E.
(3). The algorithm constructs recursively a sequence of estimates {r(k)} based on the following,

(i) The temporal differences in TD learning are defined by,

d(k) := −[(1 + γ)hr(k)(X(k)) − hr(k)(X(k + 1)) − c(X(k))] . (10)

(ii) Eligibility vectors are the sequence of q-dimensional vectors,

z(k) =

k∑

t=0

(1 + γ)−t−1ψ(X(k − t)) , k ≥ 1,

expressed recursively via,

z(k + 1) = (1 + γ)−1[z(k) + ψ(X(k + 1))], k ≥ 0, z(0) = 0.



Since X is ergodic we have for any g : X → R,

lim
k→∞

E[g(X(k))z(k)] = 〈g, R̃γψ〉.

Based on (9), for large k we obtain the approximation,

E[d(k)z(k + 1)] ≈ −1
2∇r‖h

r − h∗‖2
M , r = r(k).

The TD algorithm is the stochastic approximation algorithm associated with the O.D.E. (3),

r(k + 1) − r(k) = akd(k)z(k + 1), k ≥ 0. (11)

The O.D.E. (3) is linear and exponentially asymptotically stable under the assumption that A =
Eπ[ψ(X)ψ(X)T ] > 0. Based on this fact, one can show that the sequence of estimates {r(k)} obtained
from the TD algorithm (11) is convergent for the vanishing step-size algorithm.

Extensions Where to begin? There is the issue of constructing the basis functions {ψi} [5]. One
can also extend these methods to construct an approximation based on a family of non-linearly pa-
rameterized functions {hr} [2, 8]. Below are a few extensions in the case of linear approximations.

• The most common extension found in the literature is to redefine the definition of {z(k)}. Fix any
λ ∈ [0, 1] and consider the new definition,

z(k + 1) = (1 + γ)−1[λz(k) + ψ(X(k + 1))], z(0) = 0.

The resulting algorithm (11) is called TD(λ), where the definition of the temporal differences remain
unchanged. In particular, TD(0) takes the form,

r(k + 1) − r(k) = akd(k)ψ(X(k + 1)), k ≥ 0. (12)

The purpose of this modification is to speed convergence. The algorithm remains convergent to some
r(∞) ∈ R

q, but it is no longer consistent. Bounds on the error ‖r(∞) − r∗‖M are obtained in [9, 4].

• One can change the error criterion. For example, consider instead the minimization of the mean-
square “Bellman error”,

min
r

Eπ[(Phr (X) − (1 + γ)hr(X) + c(X))2]

Or, one might ask, why focus exclusively on this L2 norm? The L1 error may be more easily justified

min
r

Eπ[|Phr (X) − (1 + γ)hr(X) + c(X)|],

where in each case again hr(X) = rTψ(X).
On differentiating we obtain a fixed point equation that can be solved using S.A. In the first the

optimal parameter r∗ satisfies,

Eπ[(rT(Pψ (X) − (1 + γ)ψ(X) + c(X))(Pψ (X) − (1 + γ)ψ(X))] = 0,

and in the second

Eπ[sign [rT(Pψ (X) − (1 + γ)ψ(X) + c(X)](Pψ (X) − (1 + γ)ψ(X))] = 0.

The associated S.A. recursion appears to be complex since one must estimate Pψ.



• A simplification is obtained on eliminating the conditional expectation. Consider for simplicity the
L2 setting with,

min
r

Eπ[(hr (X(k + 1)) − (1 + γ)hr(X(k)) + c(X(k)))2] (13)

The minimization (13) is easily solved using S.A. since we don’t have to estimate Pψ: The optimal
parameter r∗ satisfies,

Eπ[(rT(ψ(X(k + 1)) − (1 + γ)ψ(X(k)) + c(X(k)))(ψ(X(k + 1)) − (1 + γ)ψ(X(k)))] = 0.

This can be computed by simulating the deterministic O.D.E.,

d
dr
r(t) = −a∇rEπ[(hr (X(k + 1)) − (1 + γ)hr(X(k)) + c(X(k)))2]

= −aEπ[(rT(t)(ψ(X(k + 1)) − (1 + γ)ψ(X(k)) + c(X(k)))(ψ(X(k + 1)) − (1 + γ)ψ(X(k)))].

The associated discrete-time algorithm is similar to TD(λ),

r(k + 1) − r(k) = akd(k)z(k + 1), k ≥ 0,

with d(k) again defined in (10), and z(k + 1) := (1 + γ)hr(k)(X(k)) − hr(k)(X(k + 1)).

• Finally, with an appropriate notion of distance, one can compute an optimal approximation hr∗

using a linear program (LP), or a simulation-based approximate LP [3].
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ECE 555 Control of Stochastic Systems Fall 2005

Handout: Control Variates in Simulation

In the past few lectures we have considered the general stochastic approximation recursion,

θ(k + 1) = θ(k) + ak[g(θ(k)) + ∆(k + 1)], k ≥ 0.

Under general conditions, verified by considering various ODEs, it is known that {θ(k)} converges to
the set of zeros of g.

The remaining problem is that convergence can be very slow. These notes summarize the control
variate method for speeding convergence in simulation. It is highly likely that this technique can be
generalized to other recursive algorithms.
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Figure 1: Simulation using the standard estimator, and the two controlled estimators. The plot at left shows results
with σ2

D = 25, and at right the variance is increased to σ2

D = 125. In each case the estimates obtained from the standard
Monte-Carlo estimator are significantly larger than those obtained using the controlled estimator, and the bound η−

n < η+

n

holds for all large n.

Simulating a Markov Chain Suppose that X is a Markov chain on a state space X with invariant
distribution π. For background see [8] (as well as [10, 3, 8, 4].)

For a given function F : X → R we denote,

Ln(F ) :=
1

n

n−1∑

k=0

F (X(k)) n ≥ 1 .

One can hope to establish the following limit theorems,

The Strong Law of Large Numbers, or SLLN : For each initial condition,

Ln(F ) → π(F ), a.s., n → ∞. (1)

The Central Limit Theorem, or CLT : For some σ ≥ 0 and each initial condition,

√
n[Ln(F ) − η]

w
−→ σW, n → ∞, (2)

where W is a standard normal random variable, and the convergence is in distribution.



It is assumed here that the chain is ergodic, which means that the SLLN holds for any bounded
function F : X → R.

Suppose that F : X → R is a π-integrable function. Under ergodicity the SLLN can be generalized
to any such function. Our interest is to efficiently estimate the finite mean η = π(F ). The standard
estimator is the sample path average,

ηn = Ln(F ) n ≥ 1 . (3)

Its performance is typically gauged by the associated asymptotic variance σ2 used in (2). Below are
two well known representations in terms of the centered function F̃ := F − η.

Limiting variance:

σ2 = lim
n→∞

nVar x(Ln(F )) := lim
n→∞

Ex

[
Ln(F̃ )2

]
(4)

Sum of the correlation function:

σ2 =
∞∑

k=−∞Eπ

[
F̃ (X(k))F̃ (X(0))

]
(5)

The following operator-theoretic representation holds more generally. Let Z denote a version of
the fundamental kernel, defined so that F̂ = ZF solves Poisson’s equation for some class of functions
F ,

PF̂ = F̂ − F + η. (6)

It will be convenient to apply the following bilinear and quadratic forms, defined for measurable
functions F,G : X → R,

〈〈F,G〉〉 := P (FG) − (PF )(PG), Q(F ) := 〈〈F,F 〉〉.

Using this notation we have the following representation for the asymptotic variance,

σ2(F ) = π(Q(F̂ )). (7)

Recall that the resolvent is expressed R :=
∑∞

0 2
−n−1Pn. The function s : X → (0, 1] and the

probability measure ν are called small if the minorization condition holds,

R(x,A) ≥ s(x)ν(A), x ∈ X, A ∈ B(X).

The following is the general state space version of Condition (V3):

For functions V : X → (0,∞], f : X → [1,∞),
a small function s, a small measure ν, and a
constant b < ∞, DV ≤ −f + bs (V3)

The following result is taken from [8, 6]:

Proposition. Suppose that X satisfies (V3) with π(V 2) < ∞. Then, the SLLN and CLT hold for any

F ∈ L
f
∞, and the asymptotic variance σ2(F ) exists, and can be expressed as (4), (5), or (7) above. ⊓⊔



Control-variates The purpose of the control-variate method is to reduce the variance of the stan-
dard estimator (3). See [7, 9, 2, 1] for background on the general control-variate method.

Suppose that H : X → R is a π-integrable function with known mean, and finite asymptotic
variance. By normalization we can assume that π(H) = 0. Then, for a given ϑ ∈ R and with
Fϑ := F − ϑH, the sequence {Ln(Fϑ)} provides an asymptotically unbiased estimator of π(F ). The
asymptotic variance of the controlled estimator is given by

σ2(Fϑ) = Q(F̂ϑ) = π
(
〈〈ZF,ZF 〉〉 − 2ϑ〈〈ZF,ZH〉〉 + ϑ2〈〈ZH,ZH〉〉

)
.

Minimizing over ϑ ∈ R gives the estimator with minimal asymptotic variance,

ϑ∗ =
π(〈〈ZF,ZH〉〉)

π(〈〈ZH,ZH〉〉)
.

For a Markov chain it is easy to construct a function with zero mean: consider H = J −PJ where
J is known to have finite mean. Our goal then is to choose J so that it approximates the solution to
Poisson’s equation (6): The idea is that if J = F̂ , then the resulting controlled estimator with ϑ = 1
has zero asymptotic variance. This approach has been successfully applied in queueing models by
taking J equal to the associated fluid value function described in lecture.

Consider the simple reflected random walk on R+, defined by the recursion

X(k + 1) = [X(k) + D(k + 1)]+, k ≥ 0, (8)

with [x]+ = max(x, 0) for x ∈ R, and D i.i.d.. The fluid model is given by,

q(t) = [q(0) − δ]+, t ≥ 0,

where −δ = E[D(k)] is assumed to be negative. The fluid value function is the quadratic,

J(x) =

∫ ∞

0
q(t) dt = 1

2δ
−1x2, x = q(0) ∈ R+.

Consider the special case in which D has common marginal distribution,

D(k) =

{
1 with probability α;

−1 with probability 1 − α.

The Markov chain X is then a discrete-time model of the M/M/1 queue with state space X = Z+.
When F (x) ≡ x we have seen that F̂ (x) = 1

2δ
−1(x2 + x), so that the error F̂ − J is linear in x.

Moreover, the representation (7) can be written,

σ2(F ) = π(Q(F̂ )) = 2π(F̃ F̂ ) − π(F̃ 2) = E[12δ
−1X̃3 − X̃2]

which grows like δ
−4 as δ ↓ 0 (equivalently, ρ ↑ 1.)

Returning to the random walk (8), consider the following special case in which the sequence D

is of the form D(k) = A(k) − S(k), where A and S are mutually independent, i.i.d. sequences, with
mean α, µ respectively. We let κ > 0 denote a variability parameter, and define

P{S(k) = (1 + κ)µ} = 1 − P{S(k) = 0} = (1 + κ)
−1

P{A(k) = (1 + κ)α} = 1 − P{A(k) = 0} = (1 + κ)
−1

Consequently, we have −δ = E[A(k)] − E[S(k)] = −(µ − α), and σ2
D = σ2

A + σ2
S = (µ2 + α2)κ.



The simulation results shown use µ = 4 and α = 3, so that δ = 1. Two estimators {η
−
n , η+

n }
were constructed based on the parameter values ϑ−= 1.05 and ϑ+ = 1. The plot at left in Figure 1
illustrates the resulting performance with κ = 2 (σ2

D = 25), and the plot at right shows the controlled
and uncontrolled estimators with κ = 5, and hence σ2

D = 125.
Note that the bounds η
−
n < η+

n < ηn hold for all large n, even though all three estimators are
asymptotically unbiased.

A network model The Kumar-Seidman-Rybko-Stolyar (KSRS) network shown in Figure 2 is de-
scribed in Chapter 1 of the course notes.

Station  1

µ1

µ4

Q1(t)

Q4(t) Station  2

µ2

µ3

Q2(t)

Q3(t)

α1

α3

Figure 2: The Kumar-Seidman-Rybko-Stolyar (KSRS) network.

Consider the following policy based on a vector w̄ ∈ R
2
+ of safety-stock values: Serve Q1 ≥ 1 at

Station I if and only if Q4 = 0, or

µ
−1
2 Q2 + µ
−1
3 Q3 ≤ w̄2. (9)

An analogous condition holds at Station II.
A simulation experiment was conducted to estimate the steady-state mean customer population.

So, with X = Z
4
+, we let F : X → R+ denote the ℓ1 norm on R

4. A CRW network model was
constructed in which the elements of (A,S) were taken Bernoulli (see course lecture notes.) Details
can be found in [5].

Performance as a function of safety stocks

(i)  Simulation using smoothed estimator (ii)  Simulation using standard estimator

2w

1w 2w

1w

Figure 3: Estimates of the steady-state customer population in the KSRS model as a function of 100 different safety-stock
levels using the policy (9). Two simulation experiments are shown, where in each case the simulation runlength consisted
of N = 200, 000 steps. The left hand side shows the results obtained using the smoothed estimator; the right hand side
shows results with the standard estimator.

Shown in Figure 3 are estimates of the steady-state customer population in Case I for the family
of policies (9), indexed by the safety-stock level w̄ ∈ R

2
+. Shown at left are estimates obtained using

the “smoothed estimator” based on a fluid value function. The plot at right shows estimates obtained
using the standard estimator.
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