
Markov models A Markov model is a nonlinear state space model subject to stochastic
disturbances. It would appear that the introduction of noise would make these models much
more complex than their deterministic analogs. In fact, the opposite is frequently true: By
considering the evolution of the underlying distributions, rather than the state itself, a linear
system is obtained. This is the basis of a development of Markov models that parallels the
theory of linear state space models, with or without control. In particular, spectral theory and
Lyapunov theory play a fundamental role in analysis and design.

These lectures are designed for an audience with an understanding of stochastic processes
(no need for measure theory), and exposure to deterministic state space control at the first-year
graduate level. Examples will be used throughout to illustrate the theory.

The two main references are

(1) S. P. Meyn. Control Techniques for Complex Networks. Cambridge University Press,
Cambridge, 2007.

(2) S. P. Meyn and R. L. Tweedie. Markov chains and stochastic stability. Cambridge
University Press, Cambridge, second edition, 2009. Published in the Cambridge Math-
ematical Library.

1 An Introduction to Markov Models

Monday, 01/04/10 2:00 - 3:30

This first lecture lays out the goals for the week, and begins the theoretical development
with structural theory of Markov models without control. In particular, we obtain a simple
representation of the steady-state distribution, as well as solutions to dynamic programming
equations, generalizing the Lyapunov equations that arise in linear state space theory.

Reading Sections A1-A3 of CTCN

Organization

(i) Motivation. Some applications to math and to the real world,

• Optimal Control [17], Risk Sensitive Optimal Control [1, 3]

• Approximate Dynamic Programming [4, 16]

• Finance

• Dynamic Economic Systems [6, 5]

• Large Deviations [1, 12, 11].

• Simulation [8, 13].

• Google (spectral graph theory and Markov spectral theory [9, 15, 14]).

(ii) Notation: Mainly discrete-space and discrete-time.
Transition matrix P , state space X.
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Generator (discrete-time) D = P − I,
Resolvent:

Rα = [αI −D]−1 =

∞
∑

t=0

(1 + α)−t−1Rt, α > 0.

Resolvent equations,
DRα = αRα − I

Simple examples: State space model and the CRW queue.

(iii) ϕ-Irreducibility for general space chains:
The Markov chain X is called ϕ-irreducible if there exists a measure ϕ on B(X) such
that, whenever ϕ(A) > 0, we have R(x,A) > 0 for all x ∈ X.

(iv) Small sets and functions: R ≥ s ⊗ ν. Potential kernel,

G =
∞
∑

t=0

(R − s ⊗ ν)t

(v) Un-normlized invariant measure µ = νG,

µD = 0

π( · ) = µ( · )/µ(X).

(vi) Solution to Poisson’s equation h = Gc̃,

c + Dh = η (1)

η = π(c).

(vii) Vector space setting: Given f : X → [1,∞), function c : X → R, and measure µ on X,

‖c‖f = sup
x∈X

c(x)

f(x)
‖µ‖f = sup

g:‖g‖f <∞

µ(g)

‖g‖f

History of small sets (from [18]):

“... the ideas for the proof of their [small sets] existence go back to Doeblin [7],
although the actual existence as we have it here is from Jain and Jamison [10]. Our
proof is based on that in Orey [21], where small sets are called C-sets. Nummelin
[20] Chapter 2 has a thorough discussion of conditions equivalent to that we use
here for small sets... ”

2 Stochastic Stability and Dynamic Programming

Tuesday, 01/05/10 9:30 - 11:30

The f -Norm Ergodic Theorem of MCSS characterizes stability in terms of a particular Lya-
punov drift condition. This result is proven, and illustrated with examples. For controlled
Markov chains, a variant of the Lyapunov drift condition is the average-cost optimality equa-
tion of dynamic programming.
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Reading Sections A4-A6 and Chs. 8 and 9 of CTCN. See also Part III of MCSS

Organization

(i) Basic drift criterion
DV ≤ −f + bs (V 4)

(ii) Discussion and examples:
How to construct a Lyapunov function? How to approximate a value function?

(iii) Comparison Theorem: π(f) ≤ bπ(s).

(iv) Ergodic Theorem: P tc → π(c) if ‖c‖f < ∞.

(v) Value function bounds: ‖h‖V < ∞ with h = Gc̃, provided ‖c‖f < ∞.

(vi) Average-Cost Optimality Equation:

min
u

(

c(x, u) + Duh∗ (x)
)

= η∗ Compare to (1).

3 Approximate Dynamic Programming

Thursday, 01/07/10 9:30 - 11:00

In many applications we can construct approximations to the solution to a dynamic program-
ming equation. In particular, in examples we have already seen that such approximations
can be found by considering deterministic ODE models intended to approximate the stochas-
tic model. In this lecture we show how to use this insight for the purposes of control. The
TD-learning and Q-learning algorithms are introduced for this purpose, and illustrated with
examples.

Reading Lecture notes from ECE 555 Stochastic Systems.
Section 11.5 of [17], and recent publications [4, 16]:
netfiles.uiuc.edu/meyn/www/spm pubs.html

See also [19, 22, 2]

Organization

(i) Goal: A Riccati Equation for Markov models.

(ii) TD-Learning: minθ ‖h − hθ‖2
π.

(iii) Q-Learning: minθ ‖Q − Qθ‖2
π (Q-function or Hamiltonian)
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4 Spectral Theory and Model Reduction for Markov Models

Friday, 01/08/10 - CCDC Winter 2010 Seminars - 3:00 - 4:00PM

We survey recent approaches to model reduction for Markov models based on spectral theory.
The approximating process is described as a hidden Markov model (HMM) with finite state
space.

These approximations are possible under a Lyapunov drift condition introduced by Donsker-
Varadahn in their treatment of large deviations for diffusions. In the special case of diffusions,
we find that eigenfunctions provide a decomposition of the state space into ”almost invariant”
sets. The diffusion mixes rapidly in each of these subsets prior to exiting, and the exit time
from one of these sets is approximately exponential.

Reading Lectures based on joint with with Kontoyiannis, Huisinga, and Schuette,
http://decision.csl.illinois.edu/ meyn/pages/PhaseTransitions/PhaseTransitions.html
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