Appendix A

Markov Models

This appendix describes stability theory and ergodic thdor Markov chains on a
countable state space that provides foundations for thelof@went in Part Ill of this
book. It is distilled from Meyn and Tweedi&§7], which contains an extensive bibli-
ography (the monograplt3$7] is now available on-line.)

The term “chain” refers to the assumption that the time-pter is discrete. The
Markov chains that we consider evolve on a countable staieesplenoted, with
transition law defined as follows,

Pz,y)=P{X(t+1)=y| X(t) ==z} r,yeX, t=0,1,....

The presentation is designed to allow generalization toenommplex general state
space chains as well as reflected Brownian motion models.

Since the publication ofj67] there has been a great deal of progress on the theory
of geometrically ergodic Markov chains, especially in tioatext of Large Deviations
theory. See Kontoyiannis et. ak12 313 311] and Meyn B64] for some recent results.
The website 444] also contains on-line surveys on Markov and Brownian madel

A.1 Every process is (almost) Markov

Why do we focus so much attention on Markov chain models? Aty easponse
is to cite the powerful analytical techniques available;hsas the operator-theoretic
techniques surveyed in this appendix. A more practicalyriythat most processes can
be approximated by a Markov chain.

Consider the following exampleZ is a stationary stochastic process on the non-
negative integers. A Markov chain can be constructed thatlma same steady-state
behavior, and similar short-term statistics. Specificalgfine the probability measure
ONZ.y x Z4 via,

(2, 21) = P{Z(t) = 20, Z(t + 1) = 21}, 20,21 € L.

Note thatIl captures the steady-state behavior by construction. Bgidenng the
distribution of the paifZ(t), Z(t + 1)) we also capture some of the dynamicszf

538
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The first and second marginalsldfagree, and are denoted
w(20) =P{Z(t) = 20} = D M(20,21),  20,€ Zy.
21€2L+
The transition matrix for the approximating process is defias the ratio,

H(Zo, 21)

P(Zo, 2’1) = 77(20)

; 20,21 € X,

with X = {z € Z; : w(z) > 0}.

The following simple result is established in Choriri1]l], but the origins are
undoubtedly ancient. It is a component of the model redndgehniques pioneered
by Mori and Zwanzig in the area of statistical mechani€sy 505.

Proposition A.1.1. The transition matrix” describes these aspects of the stationary
processZ:

(i) One-step dynamicsP(zp,21) = P{Z(t+ 1) =21 | Z(t) = 20}, 20,21 € X.

(i) Steady-stateThe probabilityr is invariant for P,

7'('(2’1) = Z W(ZQ)P(Zo,Zl), z21, € X.
20EX

Proof. Part (i) is simply Baye’s rule

PIZ(t+1) =21 | Z(t) = 2} = PUZ(t+1) =2,2(t) = 20} _ T(z0,21)

P{Z(t) = 20} (20
The definition of P gives(zy)P(z0, 21) = II(20, 21), and stationarity ofZ implies
thatzzo W(ZQ)P(Z(), 2’1) = Zzo H(ZQ, 21) = 7'('(2’1), which is (II) O

PropositionA.1.1is just one approach to approximation.4fis not stationary, an
alternative is to redefind as the limit,

N-1
1
(20, 21) = lim — > OP{Z(t) =20, Z(t+1) = 2},
=0

assuming this exists for eacly, z; € Z,. Similar ideas are used in Secti@n2.2
to prove that an optimal policy for a controlled Markov chaam be taken stationary
without loss of generality.

Another common technique is to add some historgtaia,

X(t):=1[Zt),Z({t—-1),...,Z(t—no)],

whereng € [1, o0] is fixed. I1fng = oo then we are including the entire history, and in
this caseX is Markov: For any possible valug of X (¢ + 1),

P{X(t+1)=o1| X(t),X(t—1),...} =P{X(t+1)=x1 | X(¢)}
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A.2 Generators and value functions

The main focus of the Appendix is performance evaluatiorenetperformance is de-
fined in terms of a cost function: X — R_. For a Markov model there are several
performance criteria that are well-motivated and are atswveniently analyzed using
tools from the general theory of Markov chains:

Discounted cost For a given discount-parameter> 0, recall that the discounted-
cost value function is defined as the sum,

=Y (1+9) T El(X®),  X(0)=zeX (A.1)
t=0
Recall from (.18 that the expectations i\(1) can be expressed in terms of thstep
transition matrix via,
E[lc(X(t)) | X(0) = 2] = P'c(x), zeX, t>0.

Consequently, denoting thiesolventby
=> (147 "1P, (A.2)
t=0

the value function4.1) can be expressed as the “matrix-vector product”,
hy(z) = Ryc(z) := ZRW(m,y)c(y), x e X
yeX

Based on this representation, it is not difficult to verifg following dynamic program-
ming equation. The discounted-cost value function solves

Dhy = —c+ vhy, (A.3)
where thegeneratorD is defined as the difference operator,
D=P-1. (A.4)
The dynamic programming equatiofs.B) is a first step in the development of dynamic

programming for controlled Markov chains contained in Gka§.

Average cost The average cost is the limit supremum of the Cesaro-average

r—1
7y := limsup — ! ZE X(t)], X(0) =z e X

r—oo T

t=0

A probability measure is called invariant if it satisfies theariance equation,
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Zw(m)D(x,y) =0, T € X, (A.5)

yeX

Under mild stability and irreducibility assumptions we fitficht the average cost coin-
cides with the spatial averagdc) = >, m(2')c(z’) for each initial condition. Under
these conditions the limit supremum in the definition of threrage cost becomes a
limit, and it is also the limit of the normalized discounteastfor vanishing discount-
rate,

r—1
e = w0) = i 3 E[e(X(0)] = iy o) (A6)

In a queueing network model the following*-irreducibility assumption fre-
quently holds withz* € X taken to represent a network free of customers.

Definition A.2.1. Irreducibility
The Markov chainX is called

(i) z*-Irreducibleif z* € X satisfies for one (and hence any)> 0,

Ry(z,2*) >0 for eachx € X.

(i) The chain is simply calledtreducibleif it is x=*-irreducible for eachx* € X.

(i) A x*-irreducible chain is calle@periodicif there existsny < oo such that
P™(z*,z*) > 0 for all n > ny.

When the chain is:*-irreducibile, we find that the most convenient sample path
representations of are expressed with respect to fiirst return timer,« to the fixed
statex™ € X. From PropositiomA.3.1 we find thaty is independent of within the
support ofr, and has the form,

Tw*—l

n=m(c) = (Ex [72]) Ene (3 ex@] A7)

t=0

Considering the function(xz) = 1{z # x*} gives,

Theorem A.2.1. (Kac’s Theorem) If X is z*-irreducible then it is positive recurrent
if and only if E,«[7,+] < oo. If positive recurrence holds, then lettingdenote the
invariant measure forX, we have

m(z*) = (Egr[rae]) " (A.8)
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Total cost and Poisson’s equationFor a given functiorc: X — R with steady state
meann, denote the centered function by= c—n. Poisson’s equation can be expressed,

Dh = —¢ (A.9)

The functionc is called theforcing function and a solutiorh,: X — R is known as a
relative value functionPoisson’s equation can be regarded as a dynamic programmin
equation; Note the similarity betweeA.Q) and A.3).

Under ther*-irreducibility assumption we have various representetiof the rel-
ative value function. One formula is similar to the definiti@\.6):

h(z) = lim (hy(z) — hy(z")), xz e X (A.10)
710

Alternatively, we have a sample path representation sirtoléA.7),
Tpx—1
h(z) = Ex[ 3 (e(x (1)) - n)}, z € X. (A.11)

This appendix contains a self-contained treatment of LjapLcriteria for stabil-
ity of Markov chains to validate formulae such as11). A central result known as
the Comparison Theorerns used to obtain bounds apor any of the value functions
described above.

These stability criteria are all couched in terms of the gatoe for X. The most
basic criterion is known as condition (V3): for a functidh: X — R, a function
f: X —[1,00), aconstanb < oo, and a finite seb C X,

DV (z) < —f + blg(x), xeX, (V3)
or equivalently,

—f(x) x eS¢

(A.12)
—flx)+b =x€b.

E[V(X(t +1) ~ V(X(8) | X(t) = 2] < {

Under thisLyapunov drift conditiorwe obtain various ergodic theorems in SectoB.
The main results are summarized as follows:

Theorem A.2.2. Suppose thaX is z*-irreducible and aperiodic, and that there ex-
ists V: X — (0,00), f: X — [1,00), a finite setS C X, andb < oo such that
Condition (V3) holds. Suppose moreover that the cost fometi X — R satisfies
lell == sup,ex c(z)/f(z) < 1.

Then, there exists a unique invariant measursatisfyingn = n(c¢) < b, and the
following hold:

n—1

. o L1
(i) Strong Law of Large Numberg-or each initial condition,— E c(X(t) —n
n
a.s. asn — oo. =0
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(i) Mean Ergodic Theorem For each initial condition,E,[c(X (t))] — n as
t — o0.

(iif) Discounted-cost value functioh,: Satisfies the uniform upper bound,

hy(z) < V(x) + by, x e X

(iv) Poisson’s equatioh: Satisfies, for somg, < oo,

[h(x) = h(y)| < V(2) +V(y) + b1,  zyeX
O

Proof. The Law of Large numbers is given in Theoréxnb.8, and the Mean Ergodic
Theorem is established in Theorekrb.4 based on couplindC with a stationary ver-
sion of the chain.
The bound; < b along with the bounds oh andh., are given in Theorem.4.5,
O

These results are refined elsewhere in the book in the catistiiand analysis of
algorithms to bound or approximate performance in netwooki@efs.

A.3 Equilibrium equations

In this section we consider in greater detail represemtatior = and h, and begin to
discuss existence and uniqueness of solutions to equitibeiquations.

A.3.1 Representations

Solving either equationA(5) or (A.9) amounts to a form of inversion, but there are
two difficulties. One is that the matrices to be inverted maibe finite dimensional.
The other is that these matrices aever invertable For example, to solve Poisson’s
equation A.9) it appears that we must inveR. However, the functionf which is
identically equal to one satisfie®f = 0. This means that the null-space Dfis
non-trivial, which rules out invertibility.

On iterating the formula®h = h — ¢ we obtain the sequence of identities,

P’h=h-¢—Pé — Ph=h—¢—Pé—P% — ...

Consequently, one might expect a solution to take the form,
©0 .
h=>Y_ Pé (A.13)
i=0

When the sum converges absolutely, then this function datesfys Poisson’s equation
(A.9).

A representation which is more generally valid is defined bgralom sum. Define
the first entrance time and first return time to a stéte X by, respectively,
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oz =min(t > 0: X (t) = 2*) Tp+ =min(t > 1: X(t) = 2*) (A.14)

PropositionA.3.1 (i) is contained in 67, Theorem 10.0.1], and (ii) is explained in
Section 17.4 of 367].

Proposition A.3.1. Letz* € X be a given state satisfyirtg,«[,«] < co. Then,

(i) The probability distribution defined below is invariant:
1 Tpx—1
w(z) == (Ex* [Tx*]) = [ Yo oux@ =a)|, zex (A.15)
t=0

(i) With = defined in (i), suppose that X — R is a function satisfyingr(|c|) <
oo. Then, the function defined below is finite-valuedXgn= the support ofr,

h(z) = E, [Tila(xa))} ~E, [UZ E(X(t))] —z), zeX. (A16)
t=0 t=0

Moreover,h solves Poisson’s equation ofy..
0

The formulae forr and h given in PropositionA.3.1 are perhaps the most com-
monly known representations. In this section we developaipetheoretic representa-
tions that are truly based on matrix inversion. These remtesions help to simplify the
stability theory that follows, and they also extend mostrelty to general state-space
Markov chains, and processes in continuous time.

Operator-theoretic representations are formulated mdesf the resolventesol-
vent matrixdefined in A.2). In the special case = 1 we omit the subscript and
write,

R(z,y) =Y 27" 'Pl(a,y),  wyeX (A.17)
t=0

In this special case, the resolvent satisfis:, X) := >, R(z,y) = 1, and hence it
can be interpreted as a transition matrix. In fact, it is [gedg the transition matrix for
a sampled process. Suppose tfiat} is an i.i.d. process with geometric distribution
satisfyingP{t, = n} = 27"~ ! forn > 0, k > 1. Let {T} : k > 0} denote the
sequence of partial sums,

To =0,andTy,1 = T} + tpoq for k > 0.
Then, the sampled process,
Y(k)=X(Ty), k>0, (A.18)

is a Markov chain with transition matrii.
Solutions to the invariance equations Mrand X are closely related:
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Proposition A.3.2. For any Markov chainX on X with transition matrixP,

() The resolvent equation holds,

DR = RD = Dg, whereDrp = R — I. (A.19)

(ii) A probability distribution7 on X is P-invariant if and only if it isR-invariant.

(i) Suppose that an invariant measureexists, and thay: X — R is given with
7(lg]) < oco. Then, a functioh: X — R solves Poisson’s equatidhh = —g
with g := g — 7w(g), if and only if

Drh = —Ryg. (A.20)
Proof. From the definition ofR we have,

o o
_ —(t+1) pt+1 _ —tpt __ _
PR_EQ P _§2P_2R I.
t=0 t=1

HenceDR = PR — R = R — I, proving (i).
To see (ii) we pre-multiply the resolvent equatign19) by =,

DR = nDp

Obviously thenmD = 0 if and only if #¥Dr = 0, proving (ii). The proof of (iii) is
similar. O

The operator-thoretic representationsmofind h are obtained under the follow-
ing minorization condition Suppose that: X — R, is a given function, and is a
probability onX such that

R(z,y) > s(x)v(y) x,y € X. (A.21)

For example, ifv denotes the probability oX which is concentrated at a singleton
x* € X, ands denotes the function oX given bys(x) := R(z,z*), x € X, then we do
have the desired lower bound,

R(z,y) 2 R(z,y) 1+ (y) = s(x)v(y)  z,yeX
The inequality A.21) is a matrix inequality that can be written compactly as,
R>s®v (A.22)

where R is viewed as a matrix, and the right hand side is the outeryatodf the
column vectors, and the row vector. From the resolvent equation andl. 22) we can
now give a roadmap for solving the invariance equatidrb). Suppose that we already
have an invariant measure so that

TR =.
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Then, on subtracting ® v we obtain,
T(R—s®v)=nmR—m[s®v|=m— v,
whered = 7(s). Rearranging gives,
Il — (R—s®v)] = . (A.23)

We can now attempt an inversion. The point is, the oper&gr:= I — R is not
invertible, but by subtracting the outer producb v there is some hope in constructing
an inverse. Define thgotential matrixas

G=) (R—sav)". (A.24)
n=0

Under certain conditions we do hage= [I — (R — s ®@ )]}, and hence fromA.23)
we obtain the representation of

™= 8[val). (A.25)

We can also attempt the ‘forward direction’ to constracGiven a pairs, v satis-
fying the lower boundA4.22), wedefineu := vG. We must then answer two questions:
(i) when is invariant? (ii) when isu(X) < co? If both are affirmative, then we do
have an invariant measure, given by

()
m(r) = —=, x e X

)= )
We will show thatu, always exists as a finite-valued measureXpand that it is always
subinvariant

wy) = > w@)R(z,y),  yeX
rzeX
Invariance and finiteness both require some forratability for the process.
The following result shows that the formul&.g5) coincides with the representa-

tion given in (A.15) for the sampled chaily".

Proposition A.3.3. Suppose that = §,+, the point mass at some staté € X, and
suppose that(z) := R(z,2*) for x € X. Then we have for each bounded function
g: X — R,

(R—s®@v)"g(z) = E.[g(Y (n)1{rX > n}], reX, n>1, (A.26)

wherer). denotes the first return time tg' for the chainY” defined in A.18. Conse-
quently,

Y
o0 7_1,*_1

Gy (x)i=Y (R—sv)"g(2) =E[ 3 (v ()],

n=0 t=0
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Proof. We have(R — s ® v)(z,y) = R(z,y) — R(z,2*) 1= = R(x,y)1y.-. OF,
in probabilistic notation,

(R-s®v)(z,y) =P, {Y(1)=y,7o- >1}, =z,yeX

This establishes the formul&\26) for n = 1. The result then extends to arbitrary
n > 1 by induction. If (A.26) is true for any givem, then(R — s ® v)"1(x, g) =

Y [(R=s@v)(,y)] [(R-s@v)"(y.9)]

yeX

=Y PAY (1) =y, 7 > LE[g(Y ()L > n)]
yeX

—E, [1{7; > 1E[g(Y (n+ 1)){Y () #a* t=2,...,n+1} | Y(l)]]

=E,[g(Y(n+1)1{r) >n+1}]

where the second equation follows from the induction hygsid) and in the third equa-
tion the Markov property was applied in the forh.19 for Y. The final equation
follows from the smoothing property of the conditional eggzgion. O

A.3.2 Communication

The following result shows that one can assume without lbgstaerality that the chain
is irreducible by restricting to aabsorbingsubset ofX. The setX,« C X defined in
PropositionA.3.4 is known as &ommunicating class

Proposition A.3.4. For eachz™ € X the set defined by
X+ ={y: R(z",y) > 0} (A.27)
is absorbing: P(x, X,«) = 1 for eachz € X,«. Consequently, iX is z*-irreducible

then the process may be restrictedXp., and the restricted process is irreducible.

Proof. We haveDR = R — I, which implies thatR = %(RP + I). Consequently, for
anyxo, r1 € X we obtain the lower bound,

R(l‘*,ﬂj‘l) > %ZR(x*,y)P(y,xl) > %R(ﬂf*,!ﬂo)P(ﬂjo,l‘l)-
yeX

Consequently, iftg € X, and P(xg,x1) > 0 thenzy € X, «. This shows thaX,- is
always absorbing. O

The resolvent equation in Propositién3.2 (i) can be generalized to any one of
the resolvent matricegR, }:

Proposition A.3.5. Consider the family of resolvent matrices.). We have the two
resolvent equations,
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() I -DJR,=R,yI-D]=1,v>0.
(i) Fordistincty;, v, € (1, 00),

sz - R% + (’Yl - ’YZ)Rw sz = R*n + (’Yl - ’Y2)R72RV1 (A.28)

Proof. For anyy > 0 we can express the resolvent as a matrix inverse,
Ry=Y (149 "'P=KI-D]"', zeX, (A.29)
t=0
and from @A.29) we deduce (i). To see (ii) write,
[l = D] =2l = D] = (v1 — )1

Multiplying on the left by[y; I — D]~! and on the right by»1 — D]~! gives,

2l = D7 =l = D7t = (1 = y2)nd — D) el — D)7
which is the first equality inA.28). The proof of the second equality is identical.O

When the chain is*-irreducible then one can solve the minorization condition
with s positive everywhere:

Lemma A.3.6. Suppose thaX is xz*-irreducible. Then there exists: X — [0, 1]
and a probability distributionv on X satisfying,

s(x) > 0forall z € Xandv(y) > 0forall y € Xg«.
Proof. Choosey; = 1,7, € (0,1), and definesg(x) = 1.+ (x), w(y) = Ry, (2%, ),
z,y € X, sothatR,, > so ® vy. From (A.28),

R-y2 =Ry + (1 — Vg)RlRW > (1 — "}/Q)Rl[SQ ® V()].

Settings = (1 — y2)R1s0 andv = vy givesR = R; > s ® v. The functions is
positive everywhere due to the-irreducibility assumption, and is positive onX«
sinceR, (z*,y) > 0if and only if R(z*,y) > 0. 0

The following is the key step in establishing subinvarigrased criteria for invari-
ance. Note that Lemma.3.7 (i) only requires the minorization conditior\(22).

Lemma A.3.7. Suppose that the function X — [0, 1) and the probability distribu-
tion v on X satisfy A.22. Then,

(i) Gs(x) < 1foreveryz € X.
(i) (R—s®@v) G=GR-s®v)=G—1.

(i) If X is z*-irreducible ands(z*) > 0, thensup,.x G(z,y) < oo for each
y e X,
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Proof. For N > 0, definegy : X — R by

N

gN = Z(R —s®uv)"s

n=0
We show by induction thajy (z) < 1 for everyz € X andN > 0. This will establish
(i) sincegy T Gs,asN 1 oco.

For eachz we havegy(z) = s(z) = s(z)v(X) < R(z,X) = 1, which verifies

the induction hypothesis whel = 0. If the induction hypothesis is true for a given
N >0, then

gn+1(z) = (R—s@v)gn () + 5(x)
< (R—s®v)l(z)+ s(x)

= [R(z,X) = s(z)v(X)] + s(z) = 1,

where in the last equation we have used the assumption tKat= 1
Part (ii) then follows from the definition af.
To prove (iii) we first apply (i), givingGR = G — I + Gs ® v. Consequently,
from (i),
GRs =Gs —s+v(s)Gs <2 onX. (A.30)
Under the conditions of the lemma we hake (y) > 0 for everyy € X, and this
completes the proof of (iii), with the explicit bound,

G(z,y) < 2(Rs(y)) ! forallz,y € X.

It is now easy to establish subinvarance:

Proposition A.3.8. For az*-irreducible Markov chain, and any small pdis, v), the
measure: = vG is always subinvariant. Writing, ,, = vGs, we have

0) P(s,v) <L
(i) pisinvariant if and only ifp(, ,) = 1.

(iiiy p is finite if and only ifvG (X) < oo.

Proof. Result (i) follows from Lemmai.3.7 and the assumption thatis a probability
distribution onX. The final result (iii) is just a restatement of the definitiofry;,. For
(i), write

,uR:Z R—-s®v)"R

o0

= Z R—s®v ”+1+Z R-—s®@u)"sQv

n=

= p=V+PiyV < e
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It turns out that the cage, ,) = 1 is equivalent to a form of recurrence.
Definition A.3.1. Recurrence
A x*-irreducible Markov chainX is called,

(i) Harris recurrent if the return time A.14) is finite almost-surely from each ini-
tial condition,
Px{Tx* < OO} = 1, T € X.

(i) Positive Harris recurrentif it is Harris recurrent, and an invariant measutre
exists.

For a proof of the following result the reader is referred3gq. A key step in
the proof is the application of Propositién3.3.

Proposition A.3.9. Under the conditions of Propositiof.3.8

() ps.y = 1ifand only if Py« {7« < oo} = 1. If either of these conditions hold
thenGs(z) = Py{m+ < oo} = 1 for eachz € X, .

(i) pu(X) < occifand only ifE;«[7,+] < oo. O

To solve Poisson’s equatioA ©) we again apply Propositiof.3.2. First note that
the solutionh is not unique since we can always add a constant to obtain aoletion
to (A.9). This gives us some flexibilityassumehatv(h) = 0, so that(R — s @ v)h =
Rh. This combined with the formul&h = h — Rf + n given in (A.20) leads to a
familiar looking identity,

I —(R—-s®v)h = Ré.
Provided the inversion can be justified, this leads to theasmtation
h=1[I—-(R—-s®v) 'Ré=GRé. (A.31)
Based on this we define tfiendamental matrix
Z:=GR(I-1®m), (A.32)
so that the function inX.31) can be expressdd= Zc.

Proposition A.3.10. Suppose that(X) < oo. If ¢: X — R is any function satisfying
u(]e]) < oo then the functiorh = Zc is finite valued on the support ofand solves
Poisson’s equation.
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Proof. We havey(|¢|) = v(GR|¢|), which shows that(GR|¢|) < oo. It follows that
h is finite valued a.€lv]. Note also from the representationof

v(h) = v(GRé¢) = u(Re) = p(é) = 0.
To see thah solves Poisson’s equation we write,
Rh=(R—-s®v)h=(R—-s®v)GRé¢ = GR¢ — Re,

where the last equation follows from Lemnaz3.7 (ii). We conclude that solves the
version of Poisson’s equatior\ (20) for the resolvent with forcing functiotke, and
PropositionA.3.2 then implies that is a solution forP with forcing functionc. O

A.3.3 Near-monotone functions

A functionc: X — R is callednear-monotond the sublevel setS..(r) := {z : ¢(x) <
r} is finite for eachr < sup,cx c(z). In applications the function is typically a cost
function, and hence the near monotone assumption is theahatndition that large
states have relatively high cost.

The functionc = 1(,.,. is near monotone sincg.(r) consists of the singleton
{z*} for r € [0,1), and it is empty for- < 0. A solution to Poisson’s equation with
this forcing function can be constructed based on the sapgtteformula A.16),

Tpr—1
) = Ee| 3 Lorpe (X (1) = w({a7)) (A33)
t=0 .

— (1 = 7({e"})Ealr] = Lo (2) = (a")Euloe]

The last equality follows from the formula(xz*)E,«[m,«] = 1 (see A.15)) and the
definitiono,+ = 0 whenX (0) = z*.

The fact thath is bounded from below is a special case of the following ga&ner
result.

Proposition A.3.11. Suppose that is near monotone with = 7(c¢) < oo. Then,

() The relative value functioi given in (A.31) is uniformly bounded from be-
low, finite-valued orX,«, and solves Poisson’s equation on the possibly larger set
Xp ={xr € X: h(x) < co}.

(i) Suppose there exists a non-negative valued functionydatisf(z) < oo for
somer € X,~, and the Poisson inequality,

Dg(z) < —c(x) +n, x e X (A.34)

Theng(z) = h(z) + v(g) for z € X,~, whereh is given in A.31). Consequently,
g solves Poisson’s equation of.«.
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Proof. Note that if) = sup,cx c¢(x) thenc(z) = n on X,«, So we may také = 1 to
solve Poisson’s equation.

We henceforth assume thak sup,.cx c¢(z), and defines = {z € X : ¢(x) < n}.
This set is finite sinceis near-monotone. We have the obvious boéfnd > —nlg(z)
for z € X, and hence

h(z) > —nGR1g (z), x e X

LemmaA.3.7and (A.30) imply thatGR1g is a bounded function oX. This completes
the proof thath is bounded from below, and Propositién3.10 establishes Poisson’s
equation.

To prove (ii) we maintain the notation used in Propositii.10. On applying
LemmaA.3.6 we can assume without loss of generality that the @air) used in the
definition of G are non-zero oiX,-. Note first of all that by the resolvent equation,

Rg—g= RDg < —Rec.
We thus have the bound,
(R—s®v)g<g— Ret—v(g)s,

and hence for each > 1,

n—1 n—1
O§(R—s®u)”g§g—Z(R—s® ‘Ré —v(g Z —5QUv
1=0 =0

On lettingn T oo this gives,
g> GRe+v(g9)Gs = h+v(g)ho,

whereh :=Gs. The functionhy is identically one orX,.« by PropositionA.3.9, which
implies thatg — v/(g) > h onX,-. Moreover, using the fact thai(h) = 0,

v(g—v(g) —h) =v(g—v(g)) —v(h) =0.

Henceg — v(g) — h = 0 a.e.[v], and this implies thay — v(g) — h = 0 on X« as
claimed. O

Bounds on the potential matri¥ are obtained in the following section to obtain
criteria for the existence of an invariant measure as wekxsicit bounds on the
relative value function.

A.4  Criteria for stability

To compute the invariant measurdt is necessary to compute the mean random sum
(A.15), or invert a matrix, such as through an infinite sum asAir24). To verify the
existenceof an invariant measure is typically far easier.

In this section we describe Foster’s criterion to test fer éiistence of an invari-
ant measure, and several variations on this approach whectolectively called the
Foster-Lyapunov criteridor stability. Each of these stability conditions can besint
preted as a relaxation of the Poissnaquality (A.34).



Control Techniques for Complex Networks Draft copy April 2007 553

Figure A.1:V (X (t)) is decreasing outside of the set

A.4.1 Foster’s criterion

Foster’s criterion is the simplest of the “Foster-Lyapuhdsift conditions for stability.
It requires that for a non-negative valued functignon X, a finite setS C X, and
b < o0,

DV (z) < —1+ blg(x), x e X (V2)

This is precisely Condition (V3) (introduced at the startti$é chapter) using’ = 1.
The construction of théyapunov functiorl/ is illustrated using the M/M/1 queue in
Section3.3.

The existence of a solution to (V2) is equivalent to positigeurrence. This is
summarized in the following.

Theorem A.4.1. (Foster’s Criterion) The following are equivalent fora*-irreducible
Markov chain

(i) Aninvariant measure exists.
(i) There is afinite se§ C X such thatE,[rs] < oo forz € S.

(iii) There existd” : X — (0, c0], finite at somery € X, a finite setS C X, and
b < oo such that Foster’s Criterion (V2) holds.

If (i) holds then there existg,« < oo such that

Ex[re<] < V() + by, x e X.

Proof. We just prove the implication (iil= (i). The remaining implications may be
found in [367, Chapter 11].
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Take any pair(s, ) positive onX,« and satisfyingR > s @ v. On applying
PropositionA.3.8it is enough to shown that(X) < oo with u = vG.

Letting f = 1 we have under (V2PV < —f + blg, and on applyingR to both
sides of this inequality we obtain using the resolvent éqonatA.19), (R — I)V =
RDV < —Rf + bR1g, or on rearranging terms,

RV <V — Rf + bR1s. (A.35)

From (A.35) we have(R— s®@v)V <V — Rf+ g, whereg:=bR1g. On iterating
this inequality we obtain,

(R—s5®v)’V < (R—sov)(V—-Rf+g)
< V-Rf+yg
—(R—s®v)Rf
+(R—-s®v)g.
By induction we obtain for each > 1,
n—1
0<S(R-s@v)"V<V-) (R-s53v) Rf+z —s®v
i=0
Rearranging terms then gives,
n—1 ' n—1 4
Z(R—s@u)’Rf < V—i—Z(R— s®v)'y,
=0 =0

and thus from the definition’(24) we obtain the bound,
GRf <V 4+ Gg. (A.36)

To obtain a bound on the final term i&.G6) recall thatg := bR1g. From its
definition we have,

GR=GIR—s@v|+Gs@v|=G—-1+(Gs)®@v
which shows that
Gg = bGR1g < b|Gls + v(S5)Gs].

This is uniformly bounded oveX by LemmaA.3.7. Sincef = 1 the bound A.36)
implies thatGRf (z) = G(z,X) < V(z) + by, x € X, with b; an upper bound ofrg.
Integrating both sides of the bounél.86) with respect tos gives,

p(X) =Y v(@)G(x.X) < v(V) +v(g).

zeX

The minorization and the drift inequalityA(35) give

su(V)=(s@v)(V) <RV <V —-1+g,
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which establishes finiteness o), and the bound,

o Viz) —1+g(x)
v(V) < ;Iel>f< s(x) '

O

The following result illustrates the geometric considierad that may be required
in the construction of a Lyapunov function, based on thetimiahip between the gra-
dientVV (z), and thedrift vector fieldA: X — R defined by

A(z) :=E[X(t+1)— X(t) | X(t) = 2], x e X (A.37)
This geometry is illustrated in Figure.1 based on the following proposition.

Proposition A.4.2. Consider a Markov chain oiX c Z‘, and aC" function
V: R — R, satisfying the following conditions: @

(a) The chain is skip-free in the mean, in the sense that

bx = ig()E[llX(t +1) = X[ | X(t) = 2] < oo

(b) There existgy > 0, by < oo, such that,

(A@Y), VV (2)) < =L +e0) +bo(L+ [lz]) Mz —yll,  @,yeX. (A38)
Then the functio” solves Foster’s criterion (V2).

Proof. This is an application of the Mean Value Theorem which astbdt there exists
a stateX € R’ on the line segment connectifg(t) and X (¢ + 1) with,

V(X(t+1) =V(X(1) + (VV (X), (X(t +1) = X(2))),
from which the following bound follows:
V(X (t+1)) < V(X(1) — (1 +e0) +bo(1+ [XOINTHX(E+1) = X
Under the skip-free assumption this shows that
DV (z) = E[V(X(t+1)-V (X (1)) | X(t) = 2] < —(1+eo)+bo(1+]z])) by, 1zl > no.

Hence Foster’s Criterion is satisfied with the finite $et- {z € X : (1+||z||)"'bx >
Eo}. O


sean
Sticky Note
This result and all that lean on it are in need of work!  I should NOT write <Delta(y), nabla V(x)> < ...

I need a bound on <Delta(x), nabla V(x)>
and a separate bound on Delta(x)-Delta(x+y)
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A.4.2 Criteria for finite moments

We now turn to the issue of performance bounds based on theutited-cost defined in
(A.2) or the average cost = 7(c) for a cost function:: X — R... We also introduce
martingale methods to obtain performance bounds. WéAgt: ¢ > 0} denote the
filtration, or history generated by the chain,

Fi=0{X(0),...,X(t)}, t > 0.

Recall that a random variabtetaking values ir¥, is called astopping timef for each
t >0,
{T = t} S ft.

That is, by observing the proce3s on the time interval0, ¢] it is possible to determine
whether or notr = ¢.

The Comparison Theorem is the most common approach to afmdiounds on
expectations involving stopping times.

Theorem A.4.3. (Comparison Theorem) Suppose that the non-negative functions
V, f, g satisfy the bound,

DV < —f+gy. x e X. (A.39)

Then for eachr € X and any stopping time we have

€, [Tf FX®)] < V(@) +E {Tz_l g(X(®))].
t=0 t=0

Proof. DefineM (0) = V(X (0)), and forn > 1,

The assumed inequality can be expressed,
EV(X(t+1) | F) < VIX(0) — F(X(0) +9(X (1), 120,
which shows that the stochastic proc@dsis asuper-martingale
EM(n+1) | F,] < M(n), n > 0.
Define forV > 1,
™V =min{t <7t +V(X(t) + f(X(1)) +9(X(t) > N}.

This is also a stopping time. The procek$ is uniformly bounded below by- N2
on the time-interval0,...,7" — 1), and it then follows from the super-martingale
property that
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EM(-V)] < EM(0)] = V(2), N> 1L

From the definition ofM we thus obtain the desired conclusion witlreplaced by
7N For each initial conditionX (0) = ,

E, [Tf FXW)] < V@) +E [ngm(t))} .
t=0 =0

The result then follows from the Monotone Convergence Té@osince we have
™ 1 71asN — . O

In view of the Comparison Theorem, to boun(@:) we search for a solution to (V3)
or (A.39) with |c| < f. The existence of a solution to either of these drift ineitjesl
is closely related to the following stability condition,

Definition A.4.1. Regularity

Suppose thafX is a x*-irreducible Markov chain, and that X — R, is a given
function. The chain is calledregular if the following cost over ay-cycleis finite for
each initial conditionr € X, and eachly € X,-:

Ty—1

E[ Y e(x(1)] < oo
t=0

Proposition A.4.4. Suppose that the functien X — R satisfies:(x) > 1 outside of
some finite set. Then,

(i) If X is c-regular then it is positive Harris recurrent and(c) < oo.

(i) Conversely, ifr(c) < oo then the chain restricted to the support ofis c-
regular.

Proof. The result follows from 367, Theorem 14.0.1]. To prove (i) observe th¥tis
Harris recurrent sincB, {7« < oo} = 1 for all z € X when the chain is-regular. We
have positivity andr(c) < oo based on the representation 15). O

Criteria forc-regularity will be established through operator manipates similar
to those used in the proof of Theorem4.1 based on the following refinement of
Foster’'s Criterion: For a non-negative valued functidron X, a finite setS C X,

b < oo, and a functionf: X — [1, 00),

DV (z) < —f(x) + blg(z), x e X (V3)

The functionf is interpreted as a bounding function. In Theor&m.5 we consider
m(c) for functionsc bounded byf in the sense that,

el g = sup ‘;((?)‘ < 00, (A.40)
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Theorem A.4.5. Suppose thaiX is x*-irreducible, and that there existg : X —
(0,00), f: X — [1,00), a finite setS C X, andb < oo such that (V3) holds. Then for
any functionc: X — R satisfying||c||; < 1,

(i) The average cost satisfies the uniform bound,

Ne = 7m(c) <b < oo, x e X

(i) The discounted-cost value function satisfies the followimdorm bound, for
any given discount parameter> 0,

hey(z) < V(x) +by7 1, x € X

(iif) There exists a solution to Poisson’s equation satisfyimgsémeb; < oo,

h(z) < V(z)+ by, x e X

Proof. Observe that (ii) and the definitior\(6) imply (i).
To prove (ii) we apply the resolvent equation,

PR,=R,P=(1+~)R, - 1. (A.41)
Equation A.41) is a restatement of EquatioA.9). Consequently, under (V3),
1+~)R,V =V =R,PV <R[V — f+blg].

Rearranging terms giveB, f + vR,V < V + bR,1g. This establishes (ii) since
R, 1s (z) < Ry(z,X) <y Lforz € X.

We now prove (iii). Recall that the measyte= v G is finite and invariant since
we may apply Theorem.4.1when the chain ig*-irreducible. We shall prove that the
functionh = GR¢ given in (A.31) satisfies the desired upper bound.

The proof of the implication (iii)=- (i) in TheoremA.4.1 was based upon the
bound A.36),

GRf <V + Gy,

whereg := bR1g. Although it was assumed there that= 1, the same steps lead to
this bound for genergf > 1 under (V3). Consequently, sine< ¢ < f,

GRc < GRf <V +Gg.
Part (iii) follows from this bound and Lemm@a 3.7 with b :=sup Gg (z) < co. O

PropositionA.4.2 can be extended to provide the following criterion for fimte-
ments in a skip-free Markov chain:

Proposition A.4.6. Consider a Markov chain oX ¢ Rf and aC' function
V: R — R, satisfying the following conditions:
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() The chain is skip-free in mean-square:

bxa = sg()E[HX(t +1) - X | X(t) = 2] < oo;

(i) There existd; < oo such that,
(A(y), VV (2)) < =] +bolle —yl?,  x,y e X (A.42)

Then the functioV solves (V3) withf (z) = 1 + 3||z||. O

A.4.3 State-dependent drift

In this section we consider consequences of state-depedidi¢conditions of the form

Y PO (2, y)V(y) < glV(2),n(z)], z€S5 (A.43)
yeX
wheren(x) is a function fromX to Z., ¢ is a function depending on which type of
stability we seek to establish, asds a finite set.
The functionn(x) here provides the state-dependence of the drift condijtginse
from anyx we must waitn(x) steps for the drift to be negative.
In order to develop results in this framework we work with anpéed chainX.
Usingn(x) we define the new transition Ia{/\ﬁ(m, A)} by

P(z,A) = P"@®) (g, A), zeX, AcX, (A.44)

and letX denote a Markov chain with this transition law. This Markdwa can be
constructed explicitly as follows. The time&z) is a (trivial) stopping time. Le{n}
denote its iterates: That is, along any sample paghs 0, n; = n(z) and

N1 = ng +n(X(ng)).

Then it follows from the strong Markov property that

~

X(k) = X(ny), k>0 (A.45)

is a Markov chain with transition la.
Let 7, = F,, be theo-field generated by the events “befotg™. that is,

Fpi={A:An{n, <n} e Fp,n>0}

We let7¢ denote the first return time 8 for the chainX. The timen,, and the event
{7s > k} arej?k_l—measurable forany C X.
The integern; is a particular time at which the original chain visits thé Se
Minimality implies the bound,
N3y > TS. (A.46)
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By adding the lengths of the sampling times along a sample path for the sampled
chain, the timez;, can be expressed as the sum,

F5—1
nag = > n(X(k)). (A.47)
k=0

These relations enable us to first apply the drift conditidrt) to bound the index at
which X reachesS, and thereby bound the hitting time for the original chain.

We prove here a state-dependent criterion for positiverrenoe. Generalizations
are described in the Notes section in Chafiterand Theoreni0.0.1contains strength-
ened conclusions for the CRW network model.

Theorem A.4.7. Suppose thaX is a z*-irreducible chain onX, and letn(z) be a
function fromX to Z, . The chain is positive Harris recurrent if there exists sdinite
setS, afunctionV: X — R, and a finite constarti satisfying

Z P"(ﬁ)(%y)v(y) < V(x) —n(x)+ blg(z), reX (A.48)
yexX

in which case for alk:
E.lrs] <V (z)+0. (A.49)

Proof. The state-dependent drift criterion for positive recuceems a direct conse-
guence of thef-regularity results of Theorem.4.3, which tell us that without any
irreducibility or other conditions oX, if f is a non-negative function and

Y Play)V(y) <V(z) - f(z) +bls(z), zeX (A.50)
yeX

for some sefS then for eachr € X

T5—1

Ex[z f(X(t))] <V(z)+b. (A.51)
t=0

We now apply this result to the chalk defined in A.45). From (A.48) we can
use @A.51) for X, with f(x) taken as(z), to deduce that

Fs—1
Em[z n(X(k))] <V(z)+b (A.52)
k=0
Thus from @.46,A.47) we obtain the boundA(49). TheoremA.4.1implies thatX is
positive Harris. O

A.5 Ergodic theorems and coupling

The existence of a Lyapunov function satisfying (V3) leadlthe ergodic theorems
(1.23), and refinements of this drift inequality lead to strongesuits. These results are
based on the coupling method described next.
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A.5.1 Coupling

Couplingis a way of comparing the behavior of the process of intekestith another
processY which is already understood. For exampleYifis taken as the stationary
version of the process, witli (0) ~ 7w, we then have the trivial mean ergodic theorem,

Jim E[e(Y (1))] = Ele(Y (t0))], 10 > 0.

This leads to a corresponding ergodic theoremXaprovided the two processes couple
in a suitably strong sense.
To precisely define coupling we define a bivariate process,

- (i) oo

whereX andY are two copies of the chain with transition probabilfy and different
initial conditions. It is assumed throughout ti¥tis x*-irreducible, and we define the
coupling timefor ¥ as the first time both chains reach simultaneously,
T=min(t>1: X(t) =Y(t) =2*) = min(t: T(t) = (%.)).
To give a full statistical description o we need to explain houX andY are
related. We assume a form of conditional independence for7"

P{U(t +1) = (z1,91)" [ ¥(0),..., W(t);¥(t) = (z0,0)", T >t}

= P(x0,21)P(yo,y1).

It is assumed that the chains coellesce at timeo thatX (t) = Y'(¢) fort > T.

The procesaP is not itself Markov since gived/(t) = (x,z)" with z # z* itis
impossible to know ifl" < ¢. However, by appending the indicator function of this
event we obtain a Markov chain denoted,

() = (), T < t}),

with state spac&* = X x X x {0,1}. The subseK x X x {1} is absorbing for this
chain.

The following two propositions allow us to infer properties¥* based on prop-
erties of X. The proof of Propositior.5.1is immediate from the definitions.

(A.53)

Proposition A.5.1. Suppose thaX satisfies (V3) withf coercive. Then (V3) holds
for the bivariate chair¥* in the form,

EVi(W(t+1)) | V() = (2,9)T] < Vi(z,y) — fulz,y) + bs,
with V. (z,y) = V(z) + V(y), f«(z,y) = f(z) + f(y), andb, = 2b. Consequently,
there existdy < oo such that,

T-1

E[Y . (F(XW) +f @) <2V(@) + V) +bo,  myeX.

t=0
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A necessary condition for the Mean Ergodic Theorem for eabjtinitial condi-
tions is aperiodicity. Similarly, aperiodicity is both ressary and sufficient for**-
irreducibility of ¥* with x** := (z*,2*,1)" € X*:

Proposition A.5.2. Suppose thaX is z*-irreducible and aperiodic. Then the bivari-
ate chain isz**-irreducible and aperiodic.

Proof. Fix anyz,y € X, and define
no = min{n > 0: P"(x,2™)P"(y,2") > 0}.

The minimum is finite sinceéX is z*-irreducible and aperiodic. We hattd7T" < n} =
0 for n < ng and by the construction ob,

P{I"=mno} = P{¥(no) = (z",2")" | T = ng} = P"(x,2")P"(y,2") > 0.

This establishes**-irreducibility.
Forn > ng we have,

P{U*(n) = 2™} > P{T = ng, ¥*(n) = 2"} = P"(z,2*)P"(y,z*)P" " (z*, z").

The right hand side is positive for all > 0 sufficiently large sinceX is aperiodic. O

A.5.2 Mean ergodic theorem

A mean ergodic theorem is obtained based upon the follosanugling inequality
Proposition A.5.3. For any giveng: X — R we have,
[E[g(X(£))] — Elg(Y ()] < E[(lg(X ()] + lg(Y (¢))LT > 1)].
If Y(0) ~ 7 so thatY” is stationary we thus obtain,
[Elg(X ()] = m(9)| < E[(lg(X(®)| + lg(Y @)NUT > 1)].
Proof. The differencey(X (t)) — g(Y'(¢)) is zerofor ¢t > T. O

The f-total variation normof a signed measure on X is defined by

[plly = sup{|p(9)| : [lglly < 1}.

Whenf = 1 then this is exactly twice thetal-variation norm For any two probability
measures, /i,

1w — 7lto := sup [u(A) — w(A)].
ACX

Theorem A.5.4. Suppose thafX is aperiodic, and that the assumptions of Theo-
remA.4.5hold. Then,
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(i) |P!(x, -) —n|y — 0ast — oo for eachz € X.

(i) There exist®y < co such that for eachr, y € X,
f: 1P, ) = Py, )lly < 2[V (@) + V()] + bo.
=0
(iii) If in addition 7 (V') < oo, then there exists; < oo such that
i 1P (, ) = =lly < 2V (x) + b1
=0

The coupling inequality is only useful if we can obtain a bdwm the expectation
Ellg(X(t))|1(T > t)]. The following result shows that this vanishes wh¥nandY
are each stationary.

Lemma A.5.5. Suppose thatX is aperiodic, and that the assumptions of Theo-
remA.4.5hold. Assume moreover that(0) andY (0) each have distributionr, and
that7(|g|) < co. Then,

Jim E[(lg(X (6)] + oY (1DDLT > 1] = 0.

Proof. Suppose thafX, Y are defined on the two-sided time-interval with marginal
distribution. It is assumed that these processes are independ€it en, —2, ... }.
By stationarity we can write,

Ex(lg(X(0)ILT > )] = Ex[lg(X (£)[1{W(4) # (2", 2"), i =0,...,t}]
= EWHQ(X(O))‘:L{\II(Z) 7é (x*7x*)T7 1=0,-1,..., _t}] :

The expression within the expectation on the right hand &iaéshes as — oo with
probability one by(z*, «*)"-irreducibility of the stationary proceqal(—t) : t € Z }.
The Dominated Convergence Theorem then implies that

Jim E[lg(X (1)|L(T > )] = E-[lg(X 0)[L{() # (@, 2)", i =0, ~1,..., )] =0.

Repeating the same steps wik replaced byY we obtain the analogous limit by
symmetry. O

Proof of Theorenh.5.4 We first prove (ii). From the coupling inequality we have,
with X (0) =z, X°(0) = v,

|P'g (z) — P'g (y)| = [E[g(X(t))] — Elg(Y (1))
< E[(lg(xX®) + g(¥ ()N UT > 1)]
< gl E[(£(X(®) + f(Y (1)) LT > )]

)
)
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Taking the supremum over ajlsatisfying||g||; < 1 then gives,
[P (z, ) = Py, )y < E[(F(X(®) + FY @) UT > t)], (A.54)

so that on summing over

Y IPH @, ) = Py, iy < D E[(F(XE) + FY (1)) UT > 1)]
t=0 t=0

~

—E[>(rx@) + Fr)).

t

Il
o

Applying PropositionA.5.1 completes the proof of (ii).
To see (iii) observe that,

> ww)IPg (@) = Plg)] = > wm)[Pg (2) — Py w)]| = 1P'g (&) = =(g)]
yex yeX
Hence by (ii) we obtain (iii) withh; = by + 27(V).

Finally we prove (i). Note that we only need establish the mergodic theorem in
(i) for a single initial conditionzy € X. To see this, first note that we have the triangle
inequality,

[P (@, - )=m()lly < [P, - )=P(zo, s +IP (o, - )=7()llys @20 € X
From this bound and Part (ii) we obtain,

limsup ||P*(z, ) — 7 (-)|ly < 11?SUP\\Pt(wo7 ) =7l

t—o00

Exactly as in A.54) we have, withX (0) = 2o andY (0) ~ m,
1P (z0, -) =7 ()lly < E[(F(X(®) + FY () UT > 1)]. (A.55)

We are left to show that the right hand side converges to zeredmexzy. Applying
LemmaA.5.5we obtain,

Jim 3™ w(@)mE[F(X(0) + FYONUT > ) | X(0) =, Y(0) = 4] =0.
Y

It follows that the right hand side ofA(55) vanishes ag — oo when X (0) = z( and
Y (0) ~ . O

A.5.3 Geometric ergodicity

TheoremA.5.4 provides a mean ergodic theorem based on the couplingfimewe
can control the tails of the coupling tini€ then we obtain a rate of convergence of
Pi(x, -)to.

The chain is calledyeometrically recurrentf E«[exp(e7,+)] < oo for somee >
0. For such chains it is shown in Theoréxb.6that for a.e[r] initial conditionz € X,
the total variation norm vanishes geometrically fast.
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Theorem A.5.6. The following are equivalent for an aperiodic;-irreducible Markov
chain:

() The chain is geometrically recurrent.

(i) There existd’: X — [1, 00| with V' (zg) < oo for somezy € X, e > 0, b < o0,
and a finite set5 ¢ X such that

DV (z) < —eV(x) + blg(z), xeX. (V4)

(i) For somer > 1,
Yo IP (") = w()ar™ < oo
n=0

If any of the above conditions hold, then withgiven in (ii), we can findy, > 1 and
b < oo such that the stronger mean ergodic theorem holds: For eaehX,t € Z.,

P (z, -) —m()||v = |S|l£/‘Ex[g(X(t)) — 7T(t)” < brO_tV(JU)- (A.56)

O

In applications Theorem.5.6 is typically applied by constructing a solution to
the drift inequality (V4) to deduce the ergodic theoremAr5E). The following result
shows that (V4) is not that much stronger than Foster'sraite

Proposition A.5.7. Suppose that the Markov chaik satisfies the following three
conditions:

(i) There existd” : X — (0, 0), a finite setS' C X, andb < oo such that Foster’'s
Criterion (V2) holds.

(i) The functionl” is uniformly Lipschitz,
ly :==sup{|V(z) = V(y)| 1 2,y € X, [lz —yl| < 1} < 0.

(i) For somesy > 0, by < oo,

bl 1= sup EE[EBOHXU)_X(O)H] < 00.
zeX

Then, there exists > 0 such that the controlled processtis-uniformly ergodic with
V: = exp(eV).

Proof. Let Ay = V(X (1)) — V(X(0)), so thatE,[Ay] < —1 + blg(x) under (V2).
Using a second order Taylor expansion we obtain for eaahds > 0,



Control Techniques for Complex Networks Draft copy April 2007 566

[Va(uc)]_lPVa () =E, [exp(s&v)]
=E,[1+ eAy + %528%/ exp(sz?xﬁv)] (A.57)
<1+e(—1+0blg(x)) + 1%E, [5%/ exp(evﬂxﬁv)]

whered, € [0, 1]. Applying the assumed Lipschitz bound and the boéuaﬂg e® for

z > 0 we obtain, for any: > 0,
1A} exp(e9,Av) < a2exp((a+¢)|Av|)

“2exp((a+ )y | X (1) - X(0)])

Settinga = ¢!/ and restricting: > 0 so that(a + £)lyy < 3y, the bound £.57) and

(iii) then give,

<a
<a

Vo(2)]'PVL (2) < (1 — &) + eblg(x) + 3by

This proves the theorem, since we havee + ¢*/3b; < 1 for sufficiently smalls > 0,
and thus (V4) holds foV. O

A.5.4 Sample paths and limit theorems

We conclude this section with a look at the sample path behavipartial sums,

n—1
Sy(n) =Y g(X(t)) (A.58)
t=0

We focus on two limit theorems under (V3):

LLN TheStrong Law of Large Numbef®lds for a functiory if for each initial con-
dition, .
lim —Sy(n) =n(g) a.s.. (A.59)
n—oo N
CLT The Central Limit Theoremnholds for g if there exists a constarfit < 0'3 < o0
such that for each initial condition € X,

: 2\—1/2 q. _ ! 1 —x2/2
lim P (noy)”/Sz(n) <t = —e dx

n—oo — 00 2

whereg = g — 7(g). Thatis, as1 — oo,
(no?2)~1/285(n) — N(0,1).

The LLN is a simple consequence of the coupling techniquesady used to prove
the mean ergodic theorem when the chain is aperiodic arsfisat{(V3). A slightly
different form of coupling can be used when the chain is plcioThere is only room
for a survey of theory surrounding the CLT, which is most algty approached using
martingale methods. A relatively complete treatement mejolnd in B67], and the
more recent survey2B?.

The following versions of the LLN and CLT are based on Theot&m.1 of B67].
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Theorem A.5.8. Suppose thaKX is positive Harris recurrent and that the functign
satisfiesr(|g|) < oo. Then the LLN holds for this function.
If moreover (V4) holds with? € LY. then,

(i) Lettingg denote the centered functign= g — | g dr, the constant

0y = Ex[77(X(0))] +2 ) Ex[3(X(0))7(X(1))] (A.60)
t=1

is well defined, non-negative and finite, and

lim LE,[(S;(n)?] = o

n—oo n

2. (A.61)

(i) If 03 = 0 then for each initial condition,

1
lim —=S5(n) =0 a.s..

n—oo \/M

(i) If o—g > 0 then the CLT holds for the functiagn
O

The proof of the theorem irBp7] is based on consideration of the martingale,

My(t) := (X (1)) = 9(X(0)) + Y _g(X(),  t=1,

with M, (0) := 0. This is a martingale since Poisson’s equatidin= g — g gives,
E[G(X (1) | X(0),..., X (t—1)] = §(X(t — 1) — §(X(t — 1)),

so that,
E[My(t) | X(0),...,X(t—1)] = My(t—1).

The proof of the CLT is based on the representatiyiit) = M,(t) + §(X(¢)) —
(X (0)), combined with limit theory for martingales, and the bouodssolutions to
Poisson’s equation given in Theoregi.5.

An alternate representation for the asymptotic varianoéesobtained through the
alternate representation for the martingale as the pattiak of a martingale difference
sequence,

My(t) = Agi),  t=>1,
=1

with {ﬁg(t) =g(X(t) —g(X(t—1)) +g(X(t —1))}. Based on the martingale
difference property, N
E[Ay(t) | Fimi] =0, t>1,
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it follows that these random variables are uncorrelatedhabthe variance oM , can
be expressed as the sum,

In this way it can be shown that the asymptotic variance isesged as the steady-state
variance ofA (). For a proof of A.62) (under conditions much weaker than assumed
in PropositionA.5.9) see B67, Theorem 17.5.3].

Proposition A.5.9. Under the assumptions of Theorén®.8the asymptotic variance
can be expressed,

oy = Ex[(84(0))%] = 7(5* — (P§)?) = (299 — ¢°). (A.62)

O

A.6 Converse theorems

The aim of Sectior\.5 was to explore the application of (V3) and the coupling mdtho
We now explain why (V3) imecessanas well as sufficient for these ergodic theorems
to hold.

Converse theorems abound in the stability theory of Markbairts. Theo-
rem A.6.1 contains one such result: #f(f) < oo then there is a solution to (V3),
defined as a certain “value function”. For&irreducible chain the solution takes the
form,

PV, =V; —f—l—bflm*, (A.63)

where the Lyapunov functiol’y defined in A.64) is interpreted as the ‘cost to reach
the stater*’. The identity (A.63) is a dynamic programming equation for thleortest
path problemdescribed in Sectiofl.4.1

Theorem A.6.1. Suppose thaX is ax*-irreducible, positive recurrent Markov chain
on X and thatr(f) < oo, wheref: X — [1, o0] is given. Then, with

Vi(z) = E, [Z f(X(t))], zeX, (A.64)

the following conclusions hold:
(i) The seiX; = {z : Vy(x) < oo} is non-empty and absorbing:

P(z,Xy) =1 forall z € X;.

(i) The identity A.63 holds withb; := E,- [i: f(X(t))] < 00.
t=1
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(i) Forz e Xy,
1
tlim ZEI[Vf(X(t))] = tlim E.[Vi(X(t)1{mpx >t} =0.

Proof. Applying the Markov property, we obtain for eache X,
PVi(x) = E. [Exy [ D0 £ 0)]]
) t=0

—e, e[ ) | X0, x(0)]]
t=1

B[ 1 0)] —E [ F0)] - f@). aex
=1

oy

On noting thatr,« = 7.~ for z # x*, the identity above implies the desired identity in
(ii).

Based on (ii) it follows thak; is absorbing. It is non-empty since it contaitig
which proves (i).

To prove the first limit in (iii) we iterate the idenitity inijito obtain,

t—1
E.[Vi(X (1)) = P'Vy (2) = Vy(a) + Y [=P"f (2) + by PF(z,a")], t2>1.
k=0

Dividing by t and lettingt — oo we obtain, wheneve¥;(z) < oo,

t—1
lim %Ex[vf(X(t))] = lim lZ[—P’ff(gc) + by PR, 2")).

t—o00 t—o00
k=0

Applying (i) and (ii) we conclude that the chain can be restd toX,, and the re-
stricted process satisfies (V3). Consequently, the coioclssof the Mean Ergodic
TheoremA.5.4 hold for initial conditionsz € Xy, which gives

.1 X
Jim SEo[VA(X(6)] = —m(f) + bym(a”),
and the right hand side is zero for by (ii).

By the definition of\/; and the Markov property we have for each> 1,

Vi (X(m)) = Excmy [ 3 (X (2)]
=0 (A.65)

Ty*

=E[ Y J(X(1) | Fu|. 0N {7 2 m).

t=m
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Moreover, the even{r,- > m} is F,,, measurable. That is, one can determine if
X(t) = z* forsomet € {1,...,m} based o, :==c{X(t) : t < m}. Consequently,
by the smoothing property of the conditional expectation,

Eo[V; (X (m))1{rpe > m}] = E[l{rx* > m}E[S FX@) | me

_ E[l{Tx* > m} Z f(X(t))] < E[Z f(X(t))]

If Vi(z) < oo, then the right hand side vanishesras— oo by the Dominated Con-
vergence Theorem. This proves the second limit in (iii). O

Proposition A.6.2. Suppose that the assumptions of Theateflhold: X is ax*-
irreducible, positive recurrent Markov chain ofiwith (f) < co. Suppose that there

existsg € L, andh € LY satisfying,
Ph=h—g.

Thenr(g) = 0, so thath is a solution to Poisson’s equation with forcing functign
Moreover, forz € Xy,

Tw*—l

he) = hz*) = E.[ 3 g(X®)]. (A.66)
t=0

Proof. Let My, () = h(X () — h(X(0)) + Y4z g(X (k)), t > 1, My(0) = 0. Then
M, is a zero-mean martingale,

E[Mh(t)] =0, and E[Mh(t + 1) ‘ ft] = Mh(t), t>0.
It follows that the stopped process is a martingale,
E[Mp (1o A (r+ 1)) | Fp] = Mp(72x A7), r>0.

Consequently, for any,

Ty* Ar—1

0 = Eo[My(rer Av)] = B [H(X (7e A7) = (X)) + 3 g(X(8))].
t=0

On rearranging terms and subtractitag:*) from both sides,

Toy* Ar—1

hx) = ha*) = E[[H(X (1) = b Are >} + 3 g(X(1)], (A6T)

t=0

where we have used the fact thetX (7,- A t)) = h(z*) on {7, < t}.
Applying TheoremA.6.1 (iii) and the assumption théait € Ll@ gives,
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E[(H(X(1) = ha™) Urae > Y|

lim sup
T—00

< (I2llv; + [A(z™)]) limsup B, [V (X (r)) {7+ > 7}] = 0.

r—00

Hence by A.67), for anyz € Xy,

Tpx AT—1
he) = hz*) = lm E.[ 3" g(x(1))].
t=0

Exchanging the limit and expectation completes the prodiis Exchange is justified
by the Dominated Convergence Theorem when&yésr) < oo sinceg € LL. O





