
Control Techniques for Complex Networks Draft copy April 22, 2007 516

11.5 Estimating a value function

Value functions have appeared in a surprising range of contexts in this book.

(i) The usual home for value functions is within the field of optimization. In the set-
ting of this book, this means MDPs. Chapter9provides many examples, following
the introduction for the single server queue presented in Chapter3.

(ii) The stability theory for Markov chains and networks in this book is centered
around Condition (V3). This is closely related to Poisson’sinequality, which is
itself a generalization of the average-cost value function.

(iii) Theorem8.4.1contains general conditions ensuring that theh-MaxWeight policy
is stabilizing. The essence of the proof is that the functionh is an approximation
to Poisson’s equation under the assumptions of the theorem.

(iv) We have just seen how approximate solutions to Poisson’s equation can be used to
dramatically accelerate simulation.

With the exception of (i), each of these techniques is easilyapplied in a wide range of
settings. The basic reason for this success is that in each ofthese three cases we are
approximatinga value function. In the case of (iii) the functionh in theh-MaxWeight
policy is only a crude approximation to the average-cost dynamic programming equa-
tion; The simplicity of this policy is a consequence of this modest goal. In contrast, the
‘curse of dimensionality’ arises in optimization when we seek an exact solution.

In this final section of the book we consider methods to construct approximations
via simulation. Our goal is to ‘learn’ the value function based on experiments on the
network. Of course, learning brings its own curses. This is summarized in the following
remark from [350]:

A large state space presents two major issues. The most obvious one is
the storage problem, as it becomes impractical to store the value function
(or optimal action) explicitly for each state. The other is the generalization
problem, assuming that limited experience does not providesufficient data
for each and every state.

The first issue is resolved by restricting to a parameterizedfamily of approximate value
functions. The learning problem is then reduced to finding the best approximation
within this class.

If we are lucky, or have some insight on the structure of the value function, then
a parameterization can also resolve the second issue. For example, if it is known that
the value function is convex, then the family of approximations can be constructed to
share this property. This imposes some continuity so that ifa great deal is learned about
the value function evaluated at a particular statex0, then this information is useful for
learning the value function at nearby points.

In the case of networks, there are natural parameterizations to consider based on
results from previous chapters.

Control Techniques for Complex Networks Draft copy April 22, 2007 517

(i) The fluid value functionJ∗ is the natural starting point to approximate the solu-
tion to the average-cost value function. In the case of the single server queue,
Theorem3.0.1can be applied to conclude that the following parameterizedfamily
includes the actual value function,

hθ(x) = θ1J
∗(x) + θ2x, x ∈ R+, θ ∈ R

2,

whereθ1 = 1 whenhθ = h∗ solves Poisson’s equation. The discussion in Sec-
tion 3.4.5suggests similar approaches to approximate the discounted-cost value
function. Example11.4.4illustrates how this approximation technique extends to
networks.

(ii) The family of all quadratic functions can be regarded asa parameterized family.
Linear programming methods were proposed in Section8.6to construct a solution
to (V3).

(iii) The perturbed value function introduced in Section4.9 is another example of a
parameterized family of functions that can potentially approximate a value func-
tion. For example, given the family of functions{h(x) = h0(x̃)} whereh0 ranges
over some class, and the perturbationx̃ defined in (4.93) depends on the parameter
θ > 0, what is the best value ofθ andh0?

Each of the parameterizations in (i)–(iii) can be used to obtain an approximate value
function for control or simulation. How then can we find the best approximation?

The evaluation criterion will depend on the context. In the case of simulation we
might choose the approximation so that the resulting asymptotic variance is minimal.
For control, the ultimate goal is to optimize performance over the class of policies con-
sidered. The algorithms described here can be used to approximate the value function
for application in approximate value iteration or policy iteration. In this case, the metric
to evaluate the approximation should reflect our goal to optimize performance.

In the remainder of this section we return to the general Markov setting in which
X denotes a Markov chain without control on a state spaceX with transition matrixP ,
and unique invariant measureπ. It isn’t necessary to assume thatX is countable, but
we do assume there is a fixed statex∗ ∈ X satisfyingπ(x∗) > 0. A functionc : X → R

is given, and our goal is to estimate a value function such as the solution to Poisson’s
equation, or the discounted-cost value function.

The basic approach to compute the best approximation is stochastic approximation
or one of its variants.

11.5.1 Stochastic approximation

There are many different kinds of value functions that we might attempt to approx-
imate. Regardless of its particular form, we assume that a parameterized family of
approximations{hθ : θ ∈ R

ℓh} is given. In the case of a linear parametrization we
suppose that we are givenℓh functions onX, denoted{ψi : 1 ≤ i ≤ ℓh}, and define

hθ(x) := θTψ(x) =

ℓh∑

i=1

θiψi(x), x ∈ X. (11.60)

Control Techniques for Complex Networks Draft copy April 22, 2007 518

We then seek the best approximation in the given class based on a particular metric to
describe the distance betweenhθ and the value functionh of interest.

Throughout most of this section we consider theL2 error,

E(θ) = ‖h− hθ‖2
π := Eπ[|h(X(0)) − hθ(X(0))|2], (11.61)

or a relatedweightedL2-norm. On writing (11.61) as the sum,

‖h− hθ‖2
π =

∑
|h(x) − hθ(x)|2 π(x)

we see that this notion of distance penalizes the difference|h(x)−hθ(x)| more strongly
for states with larger steady-state probabilityπ(x). These states are visited more fre-
quently by the chain, and are hence ‘more important’.

This is valid motivation, but the most important reason for considering (11.61) is
the fact that we can so easily construct an algorithm to minimize the error overθ.

It is assumed thathθ is a smooth function ofθ, so that the following gradient exists
for eachx,

ψθ(x) := ∇θh
θ (x). (11.62)

The gradient is independent ofθ when the parameterization is linear so thathθ is ex-
pressed as the sum (11.60). We can formulate necessary conditions for optimality by
differentiating the error with respect toθ, and setting this equal to zero. In the case of
theL2 error (11.61) the derivative with respect toθ has the probabilistic representation,

∇θ‖hθ − h‖2
π = 2Eπ[(h

θ(X) − h(X))ψθ(X)] , (11.63)

provided one can justify exchanging the derivative and expectation. When the pa-
rameterization is linear and bothh andψ have finite second moments then (11.63) is
justified, and on setting the derivative equal to zero we obtain the optimal parameter,

θ∗ = M−1
ψ bψ, whereMψ = E[ψ(X)ψ(X)T], bψ = E[h(X)ψ(X)], (11.64)

provided the matrixMψ is invertible.
The usual steepest descent algorithm to compute a minimum of‖hθ−h‖2

π is given
by the ODE,

d
dθθ(t) = −a

2
∇θ‖hθ − hγ‖2

π

= −aEπ[(hθ(t)(X(k)) − h(X(k)))ψθ(t)(X(k))]. t ≥ 0,

(11.65)

wherea > 0 is a fixed gain. One stochastic approximation algorithm is constructed as
the approximation of (11.65),

θ(k + 1) − θ(k) = −ak[(hθ(k)(X(k)) − h(X(k)))ψθ(k)(X(k))], k ≥ 0, (11.66)

where{ak} is a positive gain sequence satisfying (11.4).
The recursion (11.66) may very well approximate the ODE (11.65), and both may

converge to the optimal valueθ∗. Unfortunately there is a fundamental problem with
either approach: the value functionh appearing on the right hand side is not available
since this is the function we wish to approximate! To obtain a practical algorithm
we must find an alternative representation for the derivative (11.63). This step is the
essential contribution of temporal difference learning.

Control Techniques for Complex Networks Draft copy April 22, 2007 519

11.5.2 Least Squares Temporal Difference learning for discounted cost

So far we have suppressed the precise definition of the value function. To construct
a practical algorithm we are forced to be more explicit. The discounted-cost value
functionhγ defined in (9.34) is the simplest starting point.

To simplify the discussion further we begin with a linear parameterization. This
is the most common situation in practice, and in this case we can construct an effi-
cient algorithm without much trouble. The optimal parameter θ∗ has the representation
(11.64) in this case, and our goal is to obtain a sequence of matrices{M(n)} and
vectors{b(n)} such thatn−1M(n) → Mψ andn−1b(n) → bψ asn → ∞, so that
θ(n) = M(n)−1b(n) is an asymptotically consistent estimator ofθ∗.

To estimate the matrixMψ we can directly apply Monte-Carlo. Define the matrix
sequence,

M(n) = M(0) +
n−1∑

t=0

ψ(X(t))ψT(X(t)), n ≥ 1, (11.67)

where the matrixM(0) > 0 is introduced to ensure thatM(n) is invertible for eachn.
Provided the LLN holds forX we will haven−1M(n) →Mψ with probability one.

We assume that the LLN does hold. In fact, since all of the expectations here are
in steady-state, we can and will assume thatX is a stationary process, defined on the
two-sided time-interval. We also let denote byX a generic random variable distributed
according toπ.

What aboutbψ? The defintionbψ = E[h(X(0))ψ(X(0))] involves the value func-
tion h = hγ we wish to estimate, so we must find an alternate representation. For this
we rely on the definition of the value function,

hγ(x) =
∞∑

t=0

(1 + γ)−t−1
E[c(X(t)) | X(0) = x]

On multiplying each side byψ(x) we obtain,

hγ(x)ψ(x) =

∞∑

t=0

(1 + γ)−t−1
E[c(X(t))ψ(X(0)) | X(0) = x]

The vector we are attempting to estimate is precisely,

bψ = E[hγ(X)ψ(X)] =
∑

x∈X

hγ(x)ψ(x)π(x)

Multiplying both sides of the previous equation byπ(x) and summing overx shows
thatbψ is also expressed as a sum,

bψ =
∞∑

t=0

(1 + γ)−t−1
∑

x∈X

E[c(X(t))ψ(X(0)) | X(0) = x]π(x)

=
∞∑

t=0

(1 + γ)−t−1
E[c(X(t))ψ(X(0))]

(11.68)

Control Techniques for Complex Networks Draft copy April 22, 2007 520

Each of the expectations in the sum at right involves functions that are known to us -
the cost functionc and the basis vectorψ.

The only remaining difficulty is that these expectations involve the process in the
future, which complicates the application of Monte-Carlo.The key stepto obtain a
practical algorithm is to apply stationarity ofX, which implies that for any integeri,

E[c(X(t))ψ(X(0))] = E[c(X(t + i))ψ(X(i))] (11.69)

In particular, we can seti = −t, so that (11.68) becomes,

bψ =

∞∑

t=0

(1 + γ)−t−1
E[c(X(0))ψ(X(−t))] (11.70)

One final transformation is needed. Assume that we have absolute integrability

∞∑

t=0

(1 + γ)−t−1
E[c(X(0))‖ψ(X(−t))‖] <∞,

so that Fubini’s Theorem can be applied to give,

bψ = E

[
c(X(0))

(∞∑

t=0

(1 + γ)−t−1ψ(X(−t))
)]

Then, if we define for anyk the random variable,

ϕ(k) =
∞∑

t=0

(1 + γ)−t−1ψ(X(k − t))

the final expression can be expressedbψ = E[c(X(0))ϕ(0)]. In this form we can apply
Monte-Carlo: We haven−1b(n) → bψ asn→ ∞, with

b(n) = b(0) +

n−1∑

t=0

c(X(t))ϕ(t), (11.71)

and b(0) ∈ R
ℓh an arbitrary initialization. The resulting algorithm is generalized

slightly in the following formal definition.
The Matrix Inversion Lemma [221] is used to obtain a recursive algorithm that

avoids repeated inversion ofM(n). This identity is proven on multiplying each side of
(11.72) byG−1 +HKT

Lemma 11.5.1. (Matrix Inversion Lemma) Suppose thatG,H, andK are respec-
tivelym×m,m×n, andn×mmatrices. IfG and the sum(I+KTGH) are invertible,
then

(G−1 +HKT)−1 = G−GH(I +KTGH)−1KTG. (11.72)

⊓⊔

Control Techniques for Complex Networks Draft copy April 22, 2007 521

In applying the Matrix Inversion we takeG(n) = M−1(n) andH = K =
ψ(X(n)) to obtain the formula forG(n + 1) = M−1(n+ 1) given in (11.73b).

Definition 11.5.1.LSTD Learning for Discounted Cost

For given initial conditionsG(0) > 0, b(0) ∈ R
ℓh , ϕ(0) ∈ R

ℓh , the Least-Squares TD
(LSTD) algorithm is defined by the sequence of parameter estimates,

θ(n) = G(n)b(n), (11.73a)

together with the three recursive equations,

G(n + 1) = G(n) − G(n)ψ(X(n))ψ(X(n))TG(n)

1 + ψ(X(n))TG(n)ψ(X(n))
(11.73b)

ϕ(n + 1) = (1 + γ)−1[ϕ(t) + ψ(X(n + 1))] (11.73c)

b(n+ 1) = b(n) + ϕ(n)c(X(n)) (11.73d)

The vectorϕ(k) is called aneligibility vector.

To establish convergence of LSTD it is necessary to extend the Strong Law of
Large beyond static functions ofX(t). This can be accomplished by extending the
definition ofX. Define the bivariate process,

X ′(t) = (X(t), ϕ(t)), t ≥ 0. (11.74)

This is a general state space Markov chain, but one that has attractive stability properties
providedψ is π-integrable.

Rather than develop properties of the more complex stochastic process (11.74), in
the proof of Theorem11.5.2we extend the LLN fromX to X ′ through brute-force
calculation in a very special case.

Theorem 11.5.2. (Convergence of LSTD for Discounted Cost)Suppose thatX is
an ergodic, finite state-space Markov chain, and thatMψ > 0. Then with probability
one, from each initial condition,limn→∞G(n) = M−1

ψ and limn→∞ n−1b(n) = bψ.
Hence the LSTD algorithm is convergent:

θ(n) = G(n)b(n) → θ∗ asn→ ∞.

Proof. From the Matrix Inversion Lemma we have,

nG(n) = n
(
M(0) +

n−1∑

t=0

ψ(X(t))ψT(X(t))
)−1

,

so that convergence ofnG(n) follows by the LLN forX.
We now consider the sequence{b(n)}. Based on (11.73c) we obtain,

sean
Sticky Note
n not t

Control Techniques for Complex Networks Draft copy April 22, 2007 522

ϕ(t) = (1 + γ)−t−1ϕ(0) +

t∑

k=0

(1 + γ)−k−1ψ(X(t − k)) ,

so that ignoring transient terms involving the initial conditions,

lim
n→∞

1

n
b(n) = lim

n→∞
1

n

n−1∑

t=0

c(X(t))
(t∑

k=0

(1 + γ)−k−1ψ(X(t − k))
)
.

Following a change in the order of summation, the right hand side becomes

1

n

n−1∑

k=0

(1 + γ)−k−1
(n−1∑

t=k

c(X(t))ψ(X(t − k))
)

=

n−1∑

k=0

(1 + γ)−k−1n− k

n

(1

n− k

n−k−1∑

t=0

c(X(t+ k))ψ(X(t))
)
.

For any fixedk the LLN gives,

lim
n→∞

1

n− k

n−k−1∑

t=0

c(X(t+ k))ψ(X(t)) = E[c(X(k))ψ(X(0))]

With a bit more book-keeping we obtain from this the desired conclusion,

lim
n→∞

1

n
b(n) =

∞∑

k=0

(1 + γ)−k−1
E[c(X(k))ψ(X(0))] = bψ.

⊓⊔

11.5.3 Adjoint equations and TD learning

We now consider nonlinear parameterizations and derive thestandard TD algorithm for
value function approximation. This is based on transformations similar to those used in
the case of a linear parameterization. In particular, a version of the invariance equation
(11.69) is again critical.

A more compact, and perhaps more elegant construction of thealgorithm is ob-
tained by casting the approximation problem in a vector space setting. The vector
space is theHilbert spacedenotedL2(π), defined as the set of real-valued functions on
X whose second moment underπ is finite. We define an inner product on this Hilbert
space that is consistent with theL2 error (11.61),

〈f, g〉π = π(fg) =
∑

f(x)g(x)π(x),

so that for any two functionsf, g ∈ L2(π), theL2 norm of their difference is expressed,

‖f − g‖2
π := 〈f − g, f − g〉π = E[(f(X) − g(X))2].

Control Techniques for Complex Networks Draft copy April 22, 2007 523

If the state space is finite, withN states, then the functionsf andg can be viewed asN -
dimensional column vectors, andπ anN -dimensional row vector. The inner-product
is an ordinary inner-product inRN ,

〈f, g〉π = f TΠg,

whereΠ = diag(π).
Next we express the discounted-cost value function as a matrix-vector product.

For eacht, thet-step transition matrixP t is thet-fold product ofP with itself. For a
given discount rateγ > 0, the resolvent matrix is defined as the infinite sum,

Rγ =

∞∑

t=0

(1 + γ)−t−1P t.

This is actually a power-series expansion for the matrix inverse,

Rγ = [γI −D]−1 = [(1 + γ)I − P]−1

where the generator is defined in (8.1). With the cost functionc interpreted as a column
vector we can express the value function as the producthγ = Rγc.

In this new notation, the derivative (11.63) can be expressed as the inner product,

∇θ‖hθ − hγ‖2
π = 2〈(hθ −Rγc), ψ

θ〉π. (11.75)

We now interpret the transformations performed to construct the LSTD algorithm as
the application of an adjoint operation inL2(π).

The adjoint of a realN × N matrix is simply its transpose. In the vector space
setting of this section, the adjoint of the resolventR†

γ is characterized by the set of
equations,

〈Rγf, g〉π = 〈f,R†
γg〉π, f, g ∈ L2(π). (11.76)

A sample path representation for〈Rγf, g〉π leads to a useful representation for the
adjoint. We begin with the definition,

〈Rγf, g〉π = E
[
(Rγf (X))(g(X))] = E

[(∞∑

t=0

(1 + γ)−t−1P tf (X(0))
)
g(X(0))

]

We have by the smoothing property of the conditional expectation,

E[P tf (X(0))g(X(0))] = E
[
E[f(X(t)) | X(0)]g(X(0))

]
= E[f(X(t))g(X(0))]

and then applying (11.69) we obtain,

〈Rγf, g〉π =
∞∑

t=0

(1 + γ)−t−1
E[f(X(0))g(X(−t))].

The right hand side can be expressed〈f,R†
γg〉π, where

Control Techniques for Complex Networks Draft copy April 22, 2007 524

R†
γg (x) =

∞∑

t=0

(1 + γ)−t−1
E[g(X(−t)) | X(0) = x], x ∈ X. (11.77)

That is, the adjointR†
γ is the ordinary resolvent for the time-reversed process{X(−t) :

t ∈ Z+}.
We now obtain an alternate expression for the derivative (11.63) based on the

equivalent form (11.75). The resolvent is invertible, withR−1
γ = (1 + γ)I −P . Hence

the differencehθ − hγ can be expressed,

hθ − hγ = hθ −Rγc = Rγ [R
−1
γ hθ − c] = Rγ [(1 + γ)hθ − Phθ − c]. (11.78)

Based on this expression, the representation (11.75), and the adjoint equation (11.76),
we obtain

1
2∇θ‖hθ − hγ‖2

π =
〈
(1 + γ)hθ − Phθ − c,R†

γψ
θ
〉
π
, (11.79)

or written as an expectation,

1
2∇θ‖hθ − hγ‖2

π = E[dθ(t)ϕθ(t)], (11.80)

wheredθ(t) := (1+γ)hθ(X(t))−hθ(X(t+1))− c(X(t)), andϕθ(t) :=R†
γψ (X(t)).

We now have sufficient motivation to construct the TD learning algorithm based
on the ODE (11.65).

Definition 11.5.2.TD Learning for Discounted Cost

The TD-algorithm constructs recursively a sequence of estimates{θ(n)} based on the
following,

(i) Temporal differencesdefined by,

d(k):=−[(1+γ)hθ(k)(X(k))−hθ(k)(X(k+1))−c(X(k))] , k ≥ 1. (11.81)

(ii) Eligibility vectors: the sequence ofℓh-dimensional vectors,

ϕ(k) =

k∑

t=0

(1 + γ)−t−1ψθ(k−t)(X(k − t)) , k ≥ 1, (11.82)

expressed recursively via,

ϕ(k + 1) = (1 + γ)−1[ϕ(k) + ψθ(k+1)(X(k + 1))], k ≥ 0, ϕ(0) = 0.

The estimates ofθ∗ are defined by,

θ(n+ 1) − θ(n) = and(n)ϕ(n + 1), n ≥ 0, (11.83)

where the non-negative gain sequence{an} satisfies (11.4).

Based on (11.80), for largek the following approximation is suggested,

E[d(k)ϕ(k + 1)] ≈ −1
2∇θ‖hθ − hγ‖2

π, θ(i) ≡ θ.

The TD algorithm is the stochastic approximation algorithmassociated with the ODE
(11.65), based on this approximation.

Control Techniques for Complex Networks Draft copy April 22, 2007 525

11.5.4 Average cost

Much of Part III of the book has concentrated on average-costcontrol and average-cost
performance evaluation, and most of the approximation results have focused on Pois-
son’s equation rather than the discounted-cost analog. We now generalize the results of
Sections11.5.2and11.5.3to this setting.

Recall that a solution to Poisson’s equation, also called the relative value function,
can be expressed as a SPP value function with respect to the relative costc̃ := c − η.
For a fixed statex∗ ∈ X, we take the particular form,

hc̃(x) = Ex

[σx∗∑

t=0

c̃(X(t))
]
, x ∈ X, (11.84)

whereσx∗ denotes the first hitting time tox∗.
To extend the Hilbert space framework to this setting we express the value function

as an infinite-horizon sum,

hc̃(x) =
∞∑

t=0

Ex

[
1{σx∗ ≥ t}c̃(X(t))

]
.

Next we express each term in the sum in ‘matrix-vector product’ notation. Letting
1{x∗}cP denote the matrix whose ‘row’ corresponding tox∗ has been set to zero, we
have the probabilistic interpretation, for any functiong,

1{x∗}cPg (x) = Ex

[
1{σx∗ ≥ 1}g(X(1))

]
.

With (1{x∗}cP)t thet-fold matrix product we similarly have,

(1{x∗}cP)tg (x) = Ex

[
1{σx∗ ≥ t}g(X(t))

]
.

Hence the relative value function can be expressed ashc̃ = R0c̃, where thepotential
matrix is defined for arbitrary functionsg via

R0g (x) :=
∞∑

t=0

(1{x∗}cP)tg (x), x ∈ X.

Just as in our consideration of the resolvent, the potentialmatrix can be expressed as a
matrix inverse

R0 =

∞∑

t=0

(1{x∗}cP)t = [I − 1{x∗}cP]−1. (11.85)

A similar representation for the relative value function isgiven in (A.31).
We can follow the derivation ofR†

γ in (11.77) to express the adjoint as the potential
matrix for the time-reversed process,

R†
0g (x) = E

[∑

σ̃
[0]
x∗

≤t≤0

g(X(t)) | X(0) = x
]
, x ∈ X, g ∈ L2(π), (11.86)

Control Techniques for Complex Networks Draft copy April 22, 2007 526

where for anyk,
σ̃

[k]
x∗ = max{t ≤ k : X(t) = x∗}.

Consider the error (11.61) and its gradient (11.63). In the Hilbert space notation
introduced in Section11.5.3, we obtain a representation similar to (11.75),

∇θE(θ) = 2〈(hθ − hc̃), ψ
θ〉π.

Applying the representation (11.85) we obtain, exactly as in (11.78),

hθ − hc̃ = R0[R
−1
0 hθ − c̃] = R0[h

θ − 1{x∗}cPhθ − c̃].

Hence, the first-order condition for optimality ofθ becomes,

0 = 1
2∇θE(θ) = 〈[hθ − 1{x∗}cPhθ − c̃], R†

0ψ
θ〉π.

Following the derivation of TD learning for the discounted-cost value function we
arrive at a TD learning algorithm to estimatehc̃.

Definition 11.5.3.TD Learning for Poisson’s Equation

The TD-algorithm constructs recursively a sequence of estimates{θ(k)} based on the
following,

(i) Temporal differences,

d(k) :=−
[
hθ(k)(X(k)) − 1{x∗}c(X(k))hθ(k)(X(k + 1)) −

(
c(X(k)) − η(k)

)]
.

(ii) Eligibility vectors, the sequence ofℓh-dimensional vectors,

ϕ(k) =

k∑

t=σ̃
[k]
x∗

ψθ(k−t)(X(k − t)) , k ≥ 1, (11.87)

or written recursively,

ϕ(k + 1) = 1{X(k) 6= x∗}ϕ(k) + ψθ(k+1)(X(k + 1)), k ≥ 0

(iii) Estimates{η(k)} of η are obtained using Monte-Carlo (11.1), or any other
consistent method.

Estimates{θ(n)} of the optimal parameter are then obtained using the TD recursion
(11.83).

When the parameterization is linear we can again use the Monte-Carlo estimates
(11.73a), where the definition of{b(n)} is redefined by,

b(n) =
n−1∑

t=0

(
c(X(t)) − η(n)

)
ϕ(t), n ≥ 1,

Control Techniques for Complex Networks Draft copy April 22, 2007 527

with {ϕ(t)} generated using the recursion (11.87).
Unfortunately, neither the TD or LSTD algorithms are effective in queueing mod-

els due to the very large variance of the estimates. This willbe seen in Example11.5.1,
but first we introduce a method to reduce the variance. For this we modify the norm
through the introduction of a weighting functionΩ: X → [1,∞]. Define for two func-
tionsf, g the new inner-product

〈f, g〉π,Ω =
∑(

f(x)g(x)/Ω(x)
)
π(x),

with associated weighted norm,

‖f − g‖2
π,Ω := 〈f − g, f − g〉π,Ω = E[(f(X) − g(X))2/Ω(X)]. (11.88)

We use this norm to define the error betweenhθ andhc̃ for a given parameterθ:

E(θ) = ‖hθ − hc̃‖2
π,Ω. (11.89)

As in the foregoing, we obtain a representation for the derivative ofE(θ); Setting
this equal to zero gives the first-order necessary conditionfor optimality of θ. Under
general conditions (to justify taking the derivative inside the inner product) the deriva-
tive can be expressed∇θE(θ) = 2〈hθ − hc̃, ψ

θ〉π,Ω,, whereψθ is the gradient ofhθ.
For a linear parameterization this is independent ofθ, giving

1
2∇θE(θ) = 〈hθ, ψ〉π,Ω − 〈hc̃, ψ〉π,Ω

On denoting
Mψ = E[ψ(X)ψ(X)TΩ−1(X)], (11.90)

we have〈hθ, ψ〉π,Ω = Mψθ. From this expression and the definition of the adjoint we
have,

1
2∇θE(θ) = Mψθ − 〈c̃, R†

0ψ〉π,Ω
and setting this equal to zero gives the unique optimizer, provided the matrixMψ is
invertible.

To obtain an algorithm we must first interpret these inner products. Based on
(11.90), the matrixMψ can be estimated using an obvious modification of (11.67).

The inner-product〈c̃, R†
0ψ〉π,Ω plays the role of the vectorbψ that was introduced

in the construction of LSTD for discounted-cost. The adjoint R†
0 is again given by

(11.86), so that the LSTD algorithm for average cost is obtained as aminor modification
of Definition 11.5.1.

Definition 11.5.4.LSTD Learning for Average Cost with State Weighting

For given initial conditionsG(0) > 0, b(0) ∈ R
ℓh , ϕ(0) ∈ R

ℓh , the sequence of
parameter estimates are defined by

θ(n) = G(n)b(n), (11.91a)

where the sequencesG andb are defined by the recursive equations,

Control Techniques for Complex Networks Draft copy April 22, 2007 528

G(n + 1) = G(n) − G(n)ψ(X(n))ψ(X(n))TG(n)

Ω(X(n)) + ψ(X(n))TG(n)ψ(X(n))
(11.91b)

b(n+ 1) = b(n) + ϕ(n)
(
c(X(n)) − η(n)

)
(11.91c)

ϕ(n + 1) = 1{X(n) 6= x∗}ϕ(n) + ψ(X(n + 1))/Ω(X(n + 1)).(11.91d)

Example 11.5.1.LSTD for the M/M/1 queue

The solution to Poisson’s equation for the M/M/1 queue is thequadratic given in Propo-
sition 3.4.2. For arbitraryθ ∈ R

2 define,

hθ(x) = θ1x+ θ2x
2, x ∈ R+. (11.92)

Then, withθ∗1 = θ∗2 = 1
2 (µ− α)−1 this is the solution given in Proposition3.4.2.

To estimateθ∗ we first apply the LSTD algorithm withΩ ≡ 1. Observe that the
recursion (11.91b) is designed to estimate the inverse ofMψ. This involves estimating
indirectly the mean of thefourth momentof the queue-length process since,

Mψ = Mψ = E[ψ(Q)ψ(Q)T] = E

[(Q Q3

Q3 Q4

)]
.

The asymptotic variance of the standard estimator ofQ(t)4 is of order(1 − ρ)−10 (!)
Hence we can expect high variances when using the LSTD algorithm.

0

10

20

30

0

10

20

30

0

5

10

15

0

5

10

15

ρ = 0.8 ρ = 0.9 hθ(x) = θ1

θ1

x + θ2x
2

θ2

θ∗1 = θ∗2
0 1 2 3 4 5

x 10
6 0 1 2 3 4 5

x 10
6

0 1 2 3 4 5
x 10

6 0 1 2 3 4 5
x 10

6

Ω
(x

)
=

[1
+

(µ

� α)x]4
Ω

(x
)
≡

1

Figure 11.10: LSTD estimates for the relative value function in the M/M/1 queue based
on Definition11.5.4.

Shown in Figure11.10are results from several experiments using the LSTD al-
gorithm. In one set of experiments the weighting function was set to unity, and in the
other the polynomial,

Ω(x) = (1 + (µ− α)x)p, x ≥ 0.

Several values ofp were tried in experiments; the best value ofp = 4 was chosen in
the figure.

Control Techniques for Complex Networks Draft copy April 22, 2007 529

Consequences of the high variance are evident in Figure11.10. For loads ofρ =
0.8 or higher the estimates show high variability even after5 million iterations. The
introduction of the weighting functionsignificantlyreduces variability.

11.5.5 Optimizing shadow functions

The last performance criterion to be considered is the asymptotic variance. For sim-
plicity we restrict to linear parametrizations withhθ = θTψ.

The first step towards constructing a recursive algorithm isto obtain an expression
for the asymptotic variance in terms of the adjoint. Proposition 11.5.3provides a useful
formula for the uncontrolled estimator.

Proposition 11.5.3. The asymptotic variance in (11.26) can be expressed,

σ2
CLT = π(2c̃h†c̃ − c̃2), (11.93)

whereh†c̃ :=R†
0c̃, and the adjoint is defined in (11.86).

Proof. The representation (11.26) combined with Poisson’s equation gives,

σ2
CLT = π(h2

c̃ − (Phc̃)
2) = π(h2

c̃ − (hc̃ − c̃)2) = π(2hc̃c̃− c̃2).

From the definition of the adjoint andhc̃ we haveπ(hc̃c̃) = 〈R0c̃, c̃〉π = 〈c̃, R†
0c̃〉π,

and (11.93) then follows. ⊓⊔

The value of Proposition11.5.3is that the steady-state meanπ(c̃h†c̃) is easily esti-
mated using standard Monte-Carlo sinceh†c̃c̃ can be expressed in terms of the history
of the process. Indeed, define

ϕc(k + 1) = 1{X(k) 6= x∗}ϕc(k) +
(
c(X(k + 1)) − η(k + 1)

)
, k ≥ 0,

where{η(k)} are consistent estimates ofη. Then, under general conditions,

π(c̃hc̃) = lim
k→∞

π
(
c̃(X(k))ϕc(k)

)
= lim

n→∞
1

n

n−1∑

k=0

(
c(X(k)) − η(k)

)
ϕc(k) a.s.

We now turn to shadow functions. Proposition11.4.1tells us that the optimal
parameterθ∗ is the solution to

Σψθ = 〈ψ, hc̃〉CLT , (11.94)

whereΣψ is defined in (11.43). Applying the adjoint technique once more we obtain
the following expression for theθ∗:

Proposition 11.5.4. Under the assumptions of Proposition11.4.1the optimal param-
eter (11.44) can be expressed,

θ∗ = Σ−1
ψ bψ,

where
bψ = 〈c̃, R†

0(ψ − ψ1) + ψ1〉π, (11.95)

R†
0 is defined in (11.86), andψ1 := Pψ.

Control Techniques for Complex Networks Draft copy April 22, 2007 530

Proof. In view of (11.94), it is enough to establish that the vectorbψ defined in (11.95)
coincides with the vector〈ψ, hc̃〉CLT. Poisson’s equation forhc̃ gives,

〈ψ, hc̃〉CLT = 〈ψ, hc̃〉π − 〈Pψ,Phc̃〉π = 〈ψ, hc̃〉π − 〈ψ1, hc̃ − c̃〉π,

or 〈ψ, hc̃〉CLT = 〈ψ − ψ1, R0c̃〉π + 〈ψ1, c̃〉π. From the defining property of the adjoint,

〈ψ − ψ1, R0c̃〉π = 〈R†
0(ψ − ψ1), c̃〉π

we obtain the desired conclusion thatbψ = 〈ψ, hc̃〉CLT. ⊓⊔

To estimate the optimizerθ∗ we can separately estimateΣψ andη :=π(c) (required
to construct̃c.) It is also necessary to estimate expectations involving the two functions
R†

0ψ, andR†
0ψ

1.
The random variables{ϕ(t)} defined in (11.87) will be used for estimating expec-

tations involvingR†
0ψ, and we introduce a second sequence of eligibility vectors for

R†
0ψ

1:

ϕ1(k) =
k∑

t=σ̃
[k]
x∗

ψ1(X(k − t)) , k ≥ 1. (11.96)

We can then estimate the vectorbψ defined in (11.95) asn−1b(n) with

b(n) =

n−1∑

t=0

[(
ϕ(t) − ϕ1(t) + ψ1(X(t))

)(
c(X(t)) − η(n)

)]
(11.97)

The matrixΣψ can be estimated using standard Monte-Carlon−1Σ(n), with

Σ(n) =

n−1∑

t=0

[
ψ(X(t))ψT(X(t)) − ψ1(X(t))ψ1T

(X(t))
]
. (11.98)

Hence we obtain estimates ofθ∗ using,

θ(n) = Σ(n)−1b(n), n ≥ 1.

Once again we obtain a recursive algorithm based on the Matrix Inversion Lemma11.5.1.
Define the twoℓh× 2 matricesΨ(n) = [ψ(X(n)) | ψ1(X(n))], Ψ−(n) = [ψ(X(n)) |
−ψ1(X(n))] so that,

Ψ(n)Ψ−(n)
T
= ψ(X(n))ψ(X(n))T − ψ1(X(n))ψ1(X(n))

T
.

Then, withG(n) = Σ(n)−1, the inverseG(n + 1) = [G(n)−1 + Ψ(n)Ψ−(n)
T
]−1 is

expressed as (11.99) using the Matrix Inversion Lemma.

Definition 11.5.5.LSTD Learning for Shadow Functions

For given initial conditionsG(0) > 0, b(0) ∈ R
ℓh , ϕ(0), ϕ1(0) ∈ R

ℓh , the LSTD
algorithm is defined by the sequence of parameter estimates,

Control Techniques for Complex Networks Draft copy April 22, 2007 531

θ(n+ 1) = G(n+ 1)b(n + 1)

G(n + 1) = G(n) −G(n)Ψ(n)[I + Ψ−(n)TG(n)Ψ(n)]−1Ψ−(n)TG(n)

b(n+ 1) = b(n) +
(
ϕ(n) − ϕ1(n) + ψ1(X(n))

)(
c(X(n)) − η(n + 1)

)

ϕ(n + 1) = 1{X(n) 6= x∗}ϕ(n) + ψ(X(n + 1))

ϕ1(n+ 1) = 1{X(n) 6= x∗}ϕ1(n) + ψ1(X(n + 1)).

hθ(x) = θ1

θ1

x + θ2x
2

θ2

θ∗1 = θ∗2
0 1 2 3 4 5

x 10
6 0 1 2 3 4 5

x 10
6

00 0

10

20

30ρ = 0.8 ρ = 0.9

10

20

Figure 11.11: LSTD estimates for optimizing shadow functions in the M/M/1 queue
using Definition11.5.5.

Example 11.5.2.LSTD for the M/M/1 queue

Figure 11.11 shows results from the LSTD algorthim based on the basis functions
ψ1(x) ≡ x, ψ2(x) ≡ x2. The two experiments shown in the figure are typical re-
sults forρ = 0.8 and0.9.

Note that the sequence{θ(n)} is convergent in this setting, but the variance is again
high. This can be seen in the figure, and it can be shown analytically that it is even more
variable than the estimates of the meanη = ρ/(1 − ρ). Nevertheless, convergence of
{θ2(n)} to a value reasonably close toθ∗2 occurs within500, 000 iterations in each
experiment.

Convergence of{θ1(n)} is much slower. This is to be expected since the asymp-
totic variance of the smoothed estimator is less sensitive to this coefficient.

Control Techniques for Complex Networks Draft copy April 22, 2007 532

11.6 Notes

This chapter spans several disciplines, and the topics surveyed here cover only a small
fraction of two fields, simulation and machine learning.Modern simulation and mod-
eling by Rubinstein and Melamed [419] provides a broad and accessible introduction
to simulation. Machine learning is a rapidly evolving discipline. Some of the most ele-
gant recent work has emerged from Tsitsiklis and his progeny. The monographs Sutton
and Barto [464] and Bertsekas and Tsitsiklis [53] contain introductions to this field,
and some specific papers in the area of TD learning are discussed below.

The stochastic approximation algorithm (11.3) was introduced in Robbins and
Monro’s celebrated 1951 paper [408]. One year later, Kiefer and Wolfowitz introduced
a variation intended to solve optimization problems in which the objective function
is not smooth, or the derivative is not easily computed [299]. It is remarkable that
this highly applicable methodology was developed almost fifty years before computers
became fast enough to make these algorithms widely implementable. Nevel’son and
Has’minskĭı [384] is a valuable classic text; See Kushner and Yin [330], Benveniste,
Métivier and Priouret [45], or Chen [102] for modern treatments.

A highly influential paper on simulation of Markov chains with an emphasis con-
sistent with this chapter is Hordijk et. al. [270]. In particular, an emphasis of the paper
is estimation of confidence bounds, as well as the asymptoticvariance (11.6). Hei-
delberger’s thesis on related topics [251, 250] contains a kernel of the control variate
techniques based on the shadow functions described in Section 11.4.

The fantastically large runlengths required for accurate simulation in queueing
models was first recognized by Whitt [492] and Asmussen [24]. For more on related
themes see the work of Glynn, Iglehart and Whitt [276, 212, 214, 492, 218], and espe-
cially the survey [215].

Section11.2.1on the CLT for Markov models is based on [216, 367]. Much of
Section11.1is adapted from the survey [252]. In particular, Proposition11.1.1is taken
from [252], following [65, Exercise 29.4] (1986 edition).

One interpretation of Proposition11.3.1is that the moments and asymptotic vari-
ance of the CRW model converge to those of an associated RBM asρ ↑ ∞, which
follows from Kingman’s original 1961 result [303]. Related results for generalized
Jackson networks are contained in [199, 89].

There are several excellent treatments of large deviationsand overflow probabili-
ties for queues. See [219, 155, 446], and in particular the bookBig Queues[200].

The failure of the LDP for the single server queue as summarized in Proposi-
tion 11.3.4(as well as Theorem11.2.3) is taken from [364]. The proof presented here
based on Figure3.2 is inspired by the papers of Guillemin and Pinchon [223], and
Borovkov, Boxma, and Palmowski [78] where themost likely areaunder a tent is com-
puted in an asymptotic setting in which the area tends to infinity. This result can be
used to establish a non-zero limit in (11.37), rather than a lower bound.

A valuable reference on control variates and other variancereduction techniques
is theHandbook of Simulationby Henderson and Nelson [256]. See also Nelson [382],
Rubinstein and Melamed [419], and the survey by Glynn and Szechtman [211]. Much
of Section11.4 is based on joint work with Henderson, and his thesis [257]. The

Control Techniques for Complex Networks Draft copy April 22, 2007 533

quadratic estimator was introduced in [254], which was inspired by Henderson’s thesis
and prior work with Glynn on control variates for the GI/G/1 queue [257, 253]. Sec-
tion 11.4.5on thefluid estimatoris adapted from [258, 255]. Theory supporting these
algorithms is contained in [364, 363, 314].

The histograms shown in Figures11.1 and 11.8 were provided as a gift from
Prof. Ken Duffy.

Veatch in [480] explores bounded perturbations of the fluid value functionin ap-
proximate dynamic programming. Related techniques are considered in current re-
search to refine the fluid estimator.

Proposition11.4.1is a variant on established control variate techniques (see[333].)
The selection of an optimal control variate requires knowledge of a covariance matrix
Σ, such as given in (11.43). While it is true that this can be estimated using Monte-
Carlo or a version of TD learning, there is the danger of increased variance associated
with the additional estimation ofΣ [333]. The “loss factor” is discussed in [332, 382]
for terminating simulations, and in [340] for steady-state simulation. It is argued that
estimation should be performed “off-line” based on a large amount of data. Once an
estimate ofΣ is obtained, this is held fixed for application in subsequentsimulations.

The reader is referred to the monographs [464, 53] for general background on TD
learning. More detailed treatments can be found in [474, 418, 381, 310, 49] and the
references that follow.

The Least-Squares Temporal Difference Learning algorithm(LSTD) was intro-
duced for the discounted-cost value function in Bradtke andBarto [82]. The regenera-
tion approach to average-cost TD learning in Section11.5.4is based on [310]. Methods
to constructa basis{ψi} based on observations of a Markov model are described in
[474, 350].

The TD learning algorithm is typically presented in a modified form. For exam-
ple, in the discounted-cost case the eligibility vectors defined in (11.82) are modified
through the introduction of a ‘forgetting factor’λ ∈ [0, 1],

ϕ(k + 1) = (1 + γ)−1[λϕ(k) + ψ(X(k + 1))], ϕ(0) = 0.

The resulting algorithm (11.83) is called TD(λ), where the definition of the tempo-
ral differences remain unchanged. Under general conditions, the algorithm remains
convergent to someθ(∞) ∈ R

ℓh , but it is no longer consistent. That is, in general
θ(∞) 6= θ∗, although bounds on the error‖θ(∞) − θ∗‖π as a function ofλ can be
constructed [474, 290].

The introduction ofλ is difficult to justify, given the fact that variance reduction
can be achieved through state-weighting, as in (11.88), and this approach does not
introduce bias.

Optimization of control variates in i.i.d. models is part ofthe original formulation
of this technique. In the Markov setting this step is substantially more difficult and
solutions are more recent. The first algorithms for this purpose were introduced in
[465, 301]. The LSTD algorithm for shadow function optimization contained in Sec-
tion 11.5.5is new, and this is the first such algorithm that is asymptotically consistent.

Revise below!! And usêηW.

