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Markov Chains - Who Cares?

Goals for the week:  Understanding the highlights on 

 •  Stochastic Lyapunov Theory
 •  Dynamic Programming and Value Functions
 •  Spectral Theory and Model Reduction 
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Why I care:

 •  Optimal Control,  Risk Sensitive Optimal Control
 •  Approximate Dynamic Programming
 •  Dynamic Economic Systems
 •  Finance
 •  Large Deviations
 •  Simulation 
 •  Google

Every one of these topics is concerned 
with computation or approximations of 
Markov models, particularly value functions



Objectives for Control

Nonlinear state space model ≡ (controlled) Markov process, 

Typical form:

noisecontrol

dX(t) = f(X(t), U(t)) dt + σ(X(t), U(t)) dW (t)

state process X



Objectives for Control

Questions:  For a given feedback law,

• Is the state process stable?

• Is the average cost finite?

• Can we solve the DP equations?

• Can we approximate the average cost η  ?  The value function h  ?

E[c(X(t), U(t))]

min
u

c(x, u) + Duh∗

∗ ∗ 

(x) = η∗
{ }

Nonlinear state space model ≡ (controlled) Markov process, 
Typical form:

noisecontrol

dX(t) = f(X(t), U(t)) dt + σ(X(t), U(t)) dW (t)

state process X



Outline and Reading

Monday:  An Introduction

Tuesday:  Value Functions

�ursday:  Approximate Dynamic Programming

Friday:  Spectral �eory
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Motivation, and structural theory of 
Markov models without control

Approximations via deterministic ODE models  
TD-learning and Q-learning algorithms  

Model reduction for Markov models based on spectral theory
Lectures based on joint with with Kontoyiannis,  Huisinga, and Schuette,
netfiles.uiuc.edu/meyn/www/spm_files/PhaseTransitions/PhaseTransitions.html

Reading:   Sections A1-A3 of CTCN

Reading:   Section 11.5 of  CTCN,   Lecture Notes.
     Recent publications  netfiles.uiuc.edu/meyn/www/spm_pubs.html

Lyapunov dri� conditions and value functions
An introduction to dynamic programming

Reading:   Sections A4-A6 of CTCN 
 See also Chs. 8 and 9,  and Part III of MCSS
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