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Abstract

Let {®,,t >0} be a2 Markov process on the state space [0,00) that is stochastically ordered in
its initial state. Examples of such processes include server workloads in queues, birth and death
processes, storage and insurance risk processes, and reflected diffusions. We consider the existence of a

limiting probability measure 7 and an exponential “convergence rate” « > 0 such that

—00

tlim et sup [Pz[d)t €A]-n(4)|=0
A

for every initial state ®; = z.

The goal of this paper is to identify the largest exponential convergence rate , or at least to
find computationally reasonable bounds for such a “best” a. Coupling techniques are used to derive
such results in terms of (i) the moment generating function of the first passage time into state zero and
(ii) solutions to drift inequalities involving the generator of the process. The results give explicit
bounds for total variational convergence of the process; convergence rates for E_[ f(®,)] to [ f(y)n(dy)
for an unbounded function f are also found. We prove that frequently, the bounds obtained are the
best possible. Applications are given to dam models and queues where first passage time distributions
are tractable, and to one-dimensional reflected diffusions where the generator is the more appropriate
tool. An extension of the results to a multivariate setting and an analysis of a tandem queue are also

included.
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1. Introduction. Suppose that {®,¢>0} is a time-homogeneous strong Markov process on the
probability space (2, F, P) that takes values in the state space X =[0,00). For regularity, we assume
that the sample paths of {®,} are right continuous, have left hand limits, and are non-explosive.
Frequently, as discussed in Down et al. (1995) and Meyn and Tweedie (1993b), it is known that an
invariant distribution 7 exists and that ®, converges to 7 exponentially fast in the sense of total

variation; that is, there is an o > 0 such that

lim e** sup |P_[®,€ A]-n(4)|=0 (1.1)
£e0 Ae‘.B(X)I = |

for every z € X where B(X) is the o-algebra of Borel sets on X and the notation P_ indicates the initial

condition ®; = z. If o > 0 satisfies (1.1), we call it an exponential “rate of com}ergence”.

Our objective in this paper is to find values of « that satisfy (1.1), and, if possible, to identify

‘the largest such «, for stochastically ordered (also called stochastically monotone) Markov processes.

We will show that, for many Markov processes, the largest possible o in (1.1) is the radius of conver-
gence of the moment generating function of the first passage time of the chain into state zero, and that
this radius of convergence can frequently be bounded using “drift inequalities” based on the generator
of the process if it is not computable explicitly. Hence, this paper extends to continuous time the chain

results in Lund and Tweedie (1995).

We say that the random variable X is stochastically larger than the random variable X, if
P[X, <z]< P[X, <z] for all real z. Our primary assumption is that ®, is stochastically ordered in
its initial state; that is, if {®,} and {®,} are two copies of the process with the possibly random initial
values @, and ®j respectively, then ®, is stochastically larger than @} for all ¢ > 0 whenever @, is

stochastically larger than .

Many Markov processes are stochastically ordered in their initial state. For one example, we
cite the server workload in an M/G/1 queue (Stoyan, 1983) where a higher initial workload produces a
higher workload at all other times. Other.examples of stochastically ordered Markov processes include
birth and death processes (Van Doorn, 1981), storage processes (Brockwell ef al., 1982), insurance risk
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processes (Asmussen, 1987; Meyn and Tweedie, 1993b; Prabhu, 1980), and reflected diffusions.
Stochastic monotonicity has been seen to be crucial in the analysis of queueing networks, and single
class queueing networks and petri nets are often monotone (Baccelli and Foss, 1994; Meyn and Down,

1994; Shanthikumar and Yao, 1989).

Many of the above examples are pathwise ordered Markov processes; that is, a sample path of
the process with a higher initial state is never below a sample path of the process with a lower initial
state. For a general stochastically ordered Markov process, one can change the underlying probability
space and construct a new process that is pathwise ordered and distributionally equivalent to .the
original process (s‘ee Kamae et al. (1977 ) for the arguments). Without loss of 'generality, therefore, we
henceforth assume that the process is pathwise ordered. Thus, if {®,(w)} and {®}(w)} are tw.o sample

paths of the process for w € Q with ®y(w) > dg(w), then &,(w) > &}(w) for all ¢ > 0 as well.

2. Results. For notation, let P!(z,A)=P_[®, € A] for t>0 and A € B(X). The first passage
(hitting) time into state zero is defined as 7y =inf{t > 0: ® =0}. When ®, =0, note that 7, =0.

When @, = z, we denote the moment generating function of r, by
G(a) = B,["0];
for a general initial distribution u(A) = P[®, € A], the notations G""(a) and E,[-] are employed.
The “taboo” probability of being in the set A at time ¢ without passing through {0} first is
oPi(z,A) =P [®, € ANTy>t]

for z>0. We assume that P(0,[6,00)) > 0 for some ¢ >0 and § >0. Thus, {0} can be left and we
further assume that for each y > z > 0, the process can travel with positive probability from z to [y,00)

without passing through {0}; that is, there is a ¢ > 0 such that
oP(z,[y,00)) > 0. (2.1)

If (2.1) does not hold, then from the pathwise ordering of {®,}, one can show that the state space of
the process can be reduced to a compact subset of [0,00). In this case, most of our results can be easily

2



modified (cf. Example 3.3).
Our first key convergence rate result is stated below and proven in Section 3.
 THEOREM 2.1. Suppose that {®,} is a siochastically ordered Markov process satisfying (2.1). If

G (a) < oo for some a >0 and some z >0, then there ezisis an invariant distribution © and a finzle

constant M, such that

sup lPt(z, A)—-7(4) I < Mo (2.2)
AeB(X)
for every 2> 0 and t 2 0. Furthermore, G () < 0o and M, < G (@) + G (a). ' ]

Theorem 2.1 is a considerable improvement on known results for exponential convergence of
general processes {®,} (Thorisson, 1983; Asmussen, 1987; Meyn and Tweedie, 1993b; Down et al,
1995, Kalashnikov, 1994) which typically guarantee exponential convergence at some exponential rate s

when G _(a) < co for some a > 0, but do not link the values of s and a.

Theorem 2.1 deals with the first passage time To rather than the process itself; frequently, as is
illustrated in Sections 4 and 5, the probabilistic structure of To is readily available whereas the proba-

bilistic structure of {®,} is not.

Lemma 3.1 below shows that the radius of convergence of G_(«) is the same for all z > 0; we
denote this common radius of convergence by a*. Thus, Theorem 2.1 shows that any a < o* satisfies
(1.1) and (2.2). The proof of Theorem 2.1 will also show that (1.1) holds with a = a* when G (a") <

oo for some z > 0; however, we note that G (o) may not always be finite.

Our second key result, Theorem 2.2 below, shows that, essentfally, one can obtain the same
convergence rates for a stronger norm by examining the generator of {®,}. Theorem 2.2 also identifies
a bound for the constant M_. For this, we need the following concept of the extended generator of
{®,}, which is a slightly restricted form of that in Davis (1993). Denote by T(A) the set of all

functions f: X — R for which there is a measurable function g:-X - R such that for every z € X,



E,[£(8,)] P E,“:g(@u)du} (2.3)

t
JOE’[I 9(®,) []du < oo.
We write Af: =g when (2.3) holds and call A the extended generator of {®,}. This defines an
extension of the inﬁnitesiinal generator for Hunt processes. If the process is nonexplosive and (2.4)
holds or G («) < oo for some a > 0, then {®,} is aperiodic, irreducible, and positive Harris recurrent.
and hence has a unique invariant measure w. If V satisfies (2.4) and V(z) = co as £ — oo, then the
process is ﬁutomatically nonexplosive. If {®,} is explosive, then (2.3) may be meaningless. We refer
the reader to Meyn and Tweedie (1993a and 1993b) for general conditions for'n.on-explosivity based

upon the extended generator and for general discussions on the above issues.

Theorem 5.2 in Down. et al. (1995) shows that if there exists a “drift function” V: X = [1,0)

and constants ¢ > 0 and b < oo such that
AV(z) < —cV(z)+ bﬂ{o}(:r.), (2.4)
then there exists some o« > 0 such that (.2.2) holds. Theorem 2.2 below derives a much stronger result

that links values of ¢ in (2.4) to values of & in (2.2).

To examine moment convergence of {®,}, we define the f-norm of a function f: X - [0,00) as

[P )=y = swp |ELo(@)]-(0)] (2:5)
g< 17l
where, by stationarity,

w(o)= [ oe)(dz) = BLo(®)] (26)

’

for all ¢t > 0.

THEOREM 2.2. Suppose that {®,} is a stochastically ordered Markov process satisfying (2.1).
(1)  If (2.4) holds, then G (c) < oo for all z > 0; hence, (2.2) and (1.1) also hold for a < c.
(i1) If V(z) satisfies (2.4) and is nondecreasing in z, then .
| P4z, )=y < 2e—C'[V(z)[1 gy ()] +b/c]. |
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Part (i) of Theorem 2.2 identifies total variational exponential convergence at rate ¢ from
(2.4); Part (i) establishes convergence of all sub V-moments up to the exponential rate c. In Section

7, we show how a multivariate version of Theorem 2.2. can be used to analyze a tandem queue.

We next address the sharpness of Theorems 2.1 and 2.2. As in the chain case (Lund and
Tweedie, 1995), it is not true that o will be the best exponential convergence rate for stochastically
ordered processes; that is, it is not generally true that (2.2) fails for some z > 0 when o > a*. This is
"because our convergence rates are derived from couplings at the “minimal” state {0}. It is possible for
the process to “couple more quickly” in a state other than {0}; we illustrate this possibility in Example
3.3. Furthermore, there exist extreme cases such as storage models that never empty (T, = co when
z > 0), but where o > 0 satisfying (2.2) exist (see Lund, 1995). Hence, in general, our rates are only

bounds.

However, many stochastically ordered Markov processes are ordered in an additional manner
where a® can indeed be shown to be the best possible exponential convergence rate. Suppose that
To = 7({0}) > 0. Now let {®,(w)} and {&)(w)} denote sample paths of the process with ®,(w) =z and
®y(w) =z’ and suppose tha.t 0<z<z'. Our stronger ordering supposes the existence of & > 0 and
A > 0 such that

8 () < 2y(w) | (2.7)

whenever ¢ <inf{u > 0: ®,(w) =0} +A and z' > z + &; that is, the ordering is strict until A units of
time after the lower starting sample path first returns {0} whenever the sample paths begin at least &

units apart. The ordering in (2.7) is a variant of that used for chains in Lund and Tweedie (1995).

One example of a processes satisfying (2.7) is the server workload in an M/G/1 queue; we
elaborate on this in Section 4. Another class of stochastically ordered Markov processes satisfying (2.7)
is the storage models considered in Brockwell el al. (1982). For a stochastically ordered Markov process

satisfying (2.1) and (2.7), we prove the following result in Section 3.



THEOREM 2.3. Suppose that {®,} is a stochastically ordered Markov process satisfying (2.1). Suppose
that w5 >0 and that (2.7) holds. Let a* be the common (for all z) radius of convergence of G (a).
Then if a > o,

lim sup e** sup IPt(O,A) —m(A) l = oo. n|
X)

t—rco AeB(X

Theorem 2.3 shows that when z = 0, 7y > 0, and (2.7) holds, the process cannot converge at an
exponential rate that is larger than o*. Thus, when (2.7) holds, o* is the best possible exponential
convergence rate for a stochastically ordered Markov process. While Theorem 2.1 establishes exponen-
tial convergence at rate o when G (™) < oo, we have as yet been unable to prove “divergence” at

rate &™ when G (a™) = oo.

One can also obtain convergence rates for “unordered” Markov processes that are pathwise
dominated by stochastically ordered processes. Suppose that {®,} and {5t} are Markov processes on
(Q, %, P) with {®,} pathwise dominated by the stochastically ordered process {&%}: lfbt(w) < :I;t(w) for
all £>0 and w € Q whenever ®y(w) < 50(01). For notation, we use ¥ for the limiting distribution of
{5t} if it exists, 7 = inf{t > 0: 61& =0}, and 53:(") =E[ ¢*70 - The following result, whose proof is

identical to that in Lund and Tweedie (1995) for discrete time chains, now follows.

THEOREM 2.4.  Suppose that {®,} is a possibly nonstochastically ordered Markov process that is
pathwise bounded by a slochastically ordered Markov process {&;t} that satisfies (2.1). Further suppose

that {®,} has the limiting distribution 7 and that éz(a) < oo for some z > 0. Then

sup IPz[th € A]-n(4)|< Mxe_at
AeB(X)

for allz >0 and t >0 where M, < G (a) + G (@) < 0. : 0

3. Proofs. Our first lemma establishes three properties of stochastically ordered Markov processes.

We say that {®,} is stochastically increasing in ¢ if D, is stochastically larger than &, for ¢, ¢’ > 0.

LEMMA 3.1. Suppose that {®,} is a stochastically ordered Markov process satisfying (2.1). Then
(?) ®, is stochastically increasing in t when z = 0.
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(1) G (o) < oo for some z >0 if and only if G (a) < co for every z > 0.

(111) G (@) < oo if and only if G (a) < oo for some z > 0.

PROOF. Part () is well known (cf. Theorem IV9.3 of Lindvall (1992)). For (i), the pathwise ordering
of {®,} shows that G () is nondecreasing in z for fixed a, so if G (@) < co for some z >0, then
G (@) G (@) <o for all y<z. Let y>=z and choose t>0 such that P¥(z,[y,00)) >0. The

inequality G, (a) > ,P¥(z, [y,oo))eo‘tGy(a) now gives G, (@) < co as well.

For (iii), use the pathwise ordering of {®,} to get G (a) > G, (a)7([z,0)) for all z > 0; hence,
if G (a) < oo, then G (o) < oo for some z > 0. For the other direction, we apply Theorem 5.1 of
Down et al. (1995) to the function V(z) = G_(a) for £ > 0 with V/(0) =1 to establish the existence of a

A<1,d<oo,and h >0 such that

[ g0V @PHE0) < WV (@) 4. (3.1)

Since 7 is also invariant for the skeleton chain {®,;,n > 0}' for every fixed h, we apply Theorem 14.3.7

of Meyn and Tweedie (1993c) with f(z) = (1 — A\)V(z) and s(z) = d to obtain

G (a)= J[O oo)V(:z:)ﬂ'(d:t:) <dl1-A"l<eo

’

as required. 0

PROOF OF THEOREM 2.1. We follow Lund and Tweedie (1995) and couple a stationary trajectory of
the process with a trajectory of the process that starts from the initial level z. Let {®}} and {®?} be
two copies of the process with the initial conditions <I>(1) =z and <I>(2, = X, where X is a random variable
on (Q,%,P) with the invariant distribution 7. For a fixed t >0, Q% and Qf may be statistically
dependent; howevet;;’because « is invariant, {®?} is stationary: P_[®?¢€ A]=7(A) for all A € B(X)

and t > 0. Define T = inf{t > 0: &} = ®?} and use the coupling inequality (Lindvall, 1992) to get

sup | P!z, 4)—n(A)|< P, [T >1t]. (3.2)
A € B(X)

We remark that the strong Markov property and the right continuous sample paths of {®,} are needed



for (3.2). The subscripts on P in (3.2) indicate the dependence of T on the initial distributions.

The crucial observation is that, because of the pathwise ordering of {®,}, once the process with
the larger initial starting value has reached state zero, the process with the smaller initial starting value
must also be in state zero. Thus, P, [T >t] < P [ry>t] where v(4) = P[max(X,z) € A]for A€

B(X). Hence from (3.2) we get

sup | Pz, A) = n(A)|< P [y > t]. (3.3)
AeB(X)

Now use the Markov inequality to get

P[ro>1t]=P[X <z]P,[rg> 1]+ j(z Pl 70> tln(an) (3.4)
SP[ro> 1]+ Pr[ry> ]

< e'o’t[Gz(a) + G,r(a)].

Combining (3.3) and (3.4) establishes (1.1) and (2.2) for any a < a*. We note that M, =G (a)+

G (a) < oo follows from the assumption G ()< co and Part (iii) of Lemma 3.1. From (3.3), (3.4)

and Part (¢i7) of Lemma 3.1, we see that (2.2) is also valid for @ = o™ when G_(a™) < co.
To establish (1.1) for @ =a* when G_(a”) < co, multiply (3.3) by et and use the first

inequality in (3.4) to get

et sup |Pt(z,A) —7(A) l < e“*th[ro > t] +e“*tPﬂ,[To > t] (3.5)
AeB(X)

The finiteness of G (™) and G (a”) yield
tl_i’rgoe“ P lro>t] = Jim e ‘P lro>t]=0
which establishes (1.1) for & = a* when used in (3.5). o
We now move to the proof of Theorem 2.2, which uses a similar but slightly more subtle

coupling argument. The following lemma, which links the hitting times of {0} to solutions of the

generator drift inequality (2.4) is a special case of Theorem 6.1 of Down et al. (1995).



LEMMA 3.2. Suppose that V' is a drift function that satisfies (2.4). Then for any s < ¢ and z > 0,

V(z) > G(s)+(c — s)E,U;"estV(@,,)dt]. ]

The proof of Theorem 6.1 in Down et al. (1995) shows that Lemma 3.2 still holds if one

weakens (2.4) to AV(z) < —cV{(z) for z > 0.

PROOF OF THEOREM 2.2. For (i), choose s = ¢ in Lemma 3.2 to get G_(c) < V(z) < oo as required.

For (i), we need to refine the coupling argument used in the proof of total variational conver-
gence in Theorem 2.1. Let us consider process copies {Q}}, {<I>f} starting from z and 0, and copies
{23}, {®}} starting from X and 0 where X has distribution 7. Define the state {0} coupling times by
T, =inf{t > 0: @% = <I>f =0} and Ty = inf{t > 0: Q? = &} = 0} for the respective process pairs. Using

(2.6), the triangle inequality, and the same coupling arguments that produced (3.2) — (3.4), one obtains
T
| EL9(®)]=7(0)| < B0 |9@D r, 5 0]+ Buyo[ o@D Iz, 5 4] (3.6)
BRIPZE: . 4
+Eqo Ig((I!*t) I“{T2 > t]]+ Ew,O[I 9(®;) I"[T2 > t]]

S Bao| V@Dlz, > o [+ Faro| V@D, 5 0

+E, o V(®) bz, > t]] + EW,O[V((D?)H[Tz > :]]

SB[ V(@) 5 g+ 2B V@, 5 4]
for any function g such that |g| <V. The last inequality in (3.6) follows from the monotonicity of V
and the inequalities <I>? < <I>% and CD': < Q? forall t > 0.

Noting that the right hand side of (3.6) is free of g, we take a supremum over |g| <V and

use (2.5) to get

| Pz, ) ==y, <2E [V(3) ey > 0]+ 2B V(@ 5 ) (3.7)

To bound EI[V(CDt)ﬂ[TO > t]]’ we note from Meyn and Tweedie (1993b) that M, = ¢“*V(®,) I][f0> ;15 a

supermartingale. To establish finiteness of E_[M,] < oo for all ¢ >0 and z > 0, note that, from the



nondecreasing V, it is sufficient to show that m(V)=E,[V(®,)] <oco. Part (ii) of Theorem 4.3 in

Meyn and Tweedie (1993b) with f(z) = V(z) gives n(V') < b/c as required.

Now let {S,} be a sequence of stopping times with S, - co as n = co. Optional stopﬁing

gives
cmin(t,S_)
E, [ﬁ "V(@min(t, s, ey > min(t,Sn)]] SE[My]=V(2)[1 -1 ()]
for each ¢ > 0 and = > 0. Letting n = oo and applying Fatou’s Lemma gives
E, V@), 5 ] SV (@)1~ gy (=) (3.8)

Combining (3.7) with (3.8) and #(V) < b/c gives

" PYz,-)—n "V < 26—~ct[V(z)[1 ~lgy(@N+ b/c] (3.9)

and finishes the proof of (i7). O

PROOF OF THEOREM 2.3. This proof requires consideration of three copies of the process: {®1}, {®?},
and {@f} For initial conditions, we take (I>(1, =0, <I>(2J = X where X is random with distribution 7, and

@g = A. Arguing with the coupling time T = inf{t > 0: <I>} = &2}, we have

sup | PY(0,4) = w(4)| 2| P(0, {0}) - n((0})] | (3-10)
AeB(X) :

= |Po r al®} =0NT > t]-Py . Al2}=0NT > ]}
the three subscripts on P in (3.10) denote the three initial distributions. From the pathwise ordering of

{®,}, if ] =0, then ®; =0 and T < ¢; thus, Py . A[®] =0NT > ¢] =0 and (3.10) gives

et sup | PH(0,4) = n(4)|2 ePy . Al =0NT > t]. (3.11)
AeB(X) |

Now suppose that {@f‘} first hits state zero sometime during (¢t — A, ¢] and returns to state zero
at time ¢. Since <I>} < <I>:: for all ¢ >0, <I>} = 0; furthermore, if X > x+ A, then T >t by the ordering

assumption in (2.7). Thus,

Py o al®=0nT>1t]> Py Al75€(t-4,nd]=0NX > r+A] (3.12)
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where ‘T'g =inf{t > 0: 2 =0}. Investigating the right hand side of (3.12), we first notice that the

evolution of {®3} in ¢ is independent of X; hence,
Py alTo € t-0,41N B = 0N X > k+ A] > Pp[73 € (t-4,6]N B3 = 0]7((x+4, ). (3.13)

Since (2.1) holds, 7((z,00)) > 0 for all z > 0; hence, 7((x+A,c0)) > 0. Part (?) of Lemma 3.1 shows that

Py[®, = 0] decreases in ¢ to my; using this with the strong Markov property provides
Ppl73 € (t-a,0n 3 = 0] > myPA[ 73 € (t-a,1]]. (3.14)
Combining (3.11) — (3.14) gives

e* sup | PH(0,4) — 7(4)|> etmym((n+,00)) P Al 7 € (-4, 1]];
A € B(X)

hence, the theorem is proven if we show that

lim sup e**P,[75 € (t-4,t]] = (3.15)
t=+co

when o > o™,

To establish (3.15), we examine 73 rounded up to the nearest multiple of A. Set 73 =
0 P : 0

A[‘ro/ A] where [u] denotes the smallest integer larger than or equal to u. First notice that o* is also the

~3
radius of convergence of E_[e”"0] for any z > 0. Equation 6.2 in Lund and Tweedie (1995) shows that
g z :

lim sup e®"P,[73 = nA] = 00
n—oo

when o > a; thus, lim sup e*"P,[(n—1)A < 73 < nA] = oo and (3.15) follows. ' a
n—oo

The following example shows that' a* is not always the best exponential convergence rate for a

stochastically ordered Markov process.

EXAMPLE 3.3. Consider a finite capacity store {®,} where inputs replenishing the store’s content arrive
according to a Poisson processes with arrival rate \. The store’s capacity is K units and each arrival
completely fills the store; input exceeding the store’s capacity is discarded. The store releases content

at a unit rate when non-empty.
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It is clear that {®,} is a pathwise ordered strong Markov process with an invariant measure 7.
Notice that (2.1) hoids for all z,y € (0, K] with y > z; hence, Lemma 3.1 and Theorem 2.1 remain
valid. Let {<I>1‘} and {@f} be initial level = and stationary copies of this process respectively. Define
T* =inf{t > 0: ®! = &2 = K} as the first time when both stores are filled and note that T* has an
exponential distribution with parameter A regardless of the value of z. Since (D% = <I>? for t >T* T is

a coupling time of {®}} and {®?} and (2.2) holds for any & < A

To compare this rate to the one obtained by coupling in {0}, we first note that G_(a) < oo for

some « > 0 by geometric trials. Now choose £ = K and condition on the first arrival time to get
K o <]
Ggla)= J. ea“GK(a)/\e_’\“du-}- J e K ey
0 K

which can be solved for G g (a):

Grle) =" (3.16)

Thus we can find the radius of convergence of Gp(a), which may well be less than lambda. For a
specific comparison, take K =1 and A=2. The numerator in (3.16) is positive whenever a < 2;

2 ae” %, the smallest of

however, the denominator of (3.16) is zero whenever « is a solution to 2e~
which is 0.41 to two decimal places. Thus, ot is approximately 0.41 and G g(a) = oo when « > 0.41.

This rate is much smaller than the rate of of 27 obtained with the coupling at {K}. Finally, we note

that (2.7) is clearly violated. _ O

4. Application: Dam Processes. This section applies the results of Section 2 to the dam process of
Prabhu (1980). The results extend the M/G/1 server workload convergence rates of Cohen (1982) to

dam processes.

Consider a dam process {®,} driven by a time-homogeneous Lévy input process {4,}. Water
is released from the dam at a unit rate when present; that is, the release rule is r(u) = Il(0 oo)(u). As
noted in Brockwell et al. (1982) and Prabhu (1980), {®,} is 2 pathwise ordered strong Markov process

satisfying (2.1). When ®; = z, the sample paths of {®,} satisfy the storage equation

12
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: ¢ t -
P, =z+A,— Jor(éu)du =z+A,-t+ Joﬂ{o}(q)u)du. (4.1)

Now consider two sample paths of the process, say {®,} and {®}}, driven by the same sample path of
{A,}, but starting from the initial levels & and = respectively. We take z < z’ and note that if ¢, >0
for all u < t, then &/, > 0 for all u < ¢, and by (4.1), ®, —®, =z'—z for all w < t. It now follows that

(2.7) holds with k = A = 1.

The input process {A,} has stationary and independent increments. When finite, the moment

generating function of A, has the form E[ eM‘] = ') where

b(s) = J:o(ew — 1)(du). | (4.2)

In (4.2), v is a sigma finite measure supported on (0,00) that satisfies [ g°min(u,1)v(du) < co. Define
the “traffic intensity” by p = E[A,]; it is well known (Prabhu, 1980) that a proper limiting measure 7
exists if and only if p <1, in which case 7y =1—p>0. It is also known that (2.2) holds for some
a > 0 (Tuominen and Tweedie, 1979; Lund, 1995) when E’[eml] is finite for some s > 0. It follows
from Theorems 2.1 and 2.3 that the best possible exponential rate of convergence is o, the radius of

convergence of G () = E_[¢""°] for any z > 0.

Thus, we assume that p <1 and that E[veml] is finite for some s > 0. Arguing as in Prabhu
(1980), or taking a martingale approach as in Rosenkrantz (1983) or Kella and Whitt (1992), one
obtains G (a) = e“™®) where 7(s) is a solution to the functional equation n(s) = s+ ¢(7n(s)). Hence,

a” is the largest s where 7(s) < co.

To identify this largest s, define f(s) = s — ¢(s) and note that 7(s) solves s = f(5(s)). Observe
that If(s)|< oo whenever E[eSAl] < 0o. Other properties of f include: f(0)=0, f(0)= 1—p>0,
F"(s) <0 for all s >0, and f(s) » —oo as s - co. Hence, f is a continuous concave function and the
supremum f* = sup{f(s):s > 0} is finite. For each s € (0,8%), there are at most two positive values
of n(s) such that f(n(s)) =s, but one value of 7(s), from the concavity of f, decreases as s increases.
ﬁence, for s < %, n(s) is the unique “nondecreasing inverse” of f and is finite. Now let s > #* and
suppose that 7(s) <co. Then f(z)<pf*<s for every £>0. Choosing z=r7(s) and applying

13



7(s) = s + ¢(n(s)) produces the contradiction s = f(n(s)) < s; hence, 7(s) = oo and o* = g*.

Hence, we have proven the following resuit.

THEOREM 4.1. Suppose that {®,} is a dam process with the Lévy inpul process {A,} and the unit
release rule r(u) = (0,00)(”)- IfE[A;]1< 1 and E| 68A1 ] < 0o for some s >0, then (1.1) and (2.2) hold

for a < o* =sup{s — é(s): s >0} and (1.1) and (2.2) fail when z =0 and a > ™. 0

. . . ' A
To attain exponential convergence at rate o, one need only check that E[es 1] < oo for s=

argsup[f(s)]. We have been unable to establish whether this finiteness holds in generality.

Convergence rates for some non-unit release storage models can be obtained from a comparison
and Theorem 2.4. Let {®;} be a storage process with Lévy input {A,} and the release rate r*(u) when
the storage level is u (see Brockwell et al. (1982)). Suppose that E[A,;] <1 and that r*(z) >1 for all
u > 0. In this case, Brockwell et al. (1982) show that an invariant measure 7* exists for {®;} and that
the ordering ®; < ®, for all ¢ > 0 holds when the two processes are defined from the same sample path

of {A,}. Hence, by Theorem 2.4, (2.2) also holds for {®;} when o < sup{s — ¢(s):5 > 0}.

Theorem 4.1 reproduces the explicit convergence rate for the server workload in the M/M/1

queue obtained by Morse (1958). Here, {A,} is a compound Poisson process

Nt
Al = Z Y",

i=1
where {N,} is a Poisson process with arrival rate A and {Y} is an i.i.d. sequence of random variables
with the density function pe™” for > 0. We assume that p = A/p < 1 and notice that E|[ esyl] < o0
whenever s < p. Computations show that f(s) = s— As[u—s]™! for s < u and that o* = (Ve- VAR
In this case, exponential convergence at rate a* is indeed achieved: argsup[f(s)] =p—+/u) and

sA

E[e 1] < oo for all s< p. This rate has also appeared in a birth and death process setting (Van

Doorn, 1985; Zeifman, 1991).
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5. Application: Periodic Queues. In this section, we derive the best exponential convergence ra.te of
the server workload process {®,} in the periodic single-server queueing model of Afanas’eva (1985).
Here, customers arrive at the queue acc?rding to a Poisson process with bounded intensity function
A(-). We take the period of the system to be 1: A(n+7) = A(y) for each natural number n and
v €[0,1). If the ith customer arrives at the queue at time n+ v, then the workload induced to the
server has the distributi(;n function H ,Y( -} which only depends on 7. The server works at a unit rate

when work is available for processing.

Let A, denote the total workload submitted to the server during [0,t]. When finite, the

moment generating function of A, takes on a periodic form of (4.2):

t (oo
E[™) :epr J (e — 1)H1(du)x(~,)d7], (5.1)
0Jo
where H_(-) and M(y) are extended periodically to all v € [0,00). The mean workload added to the

queue over one seasonal cycle is

1[0 ’
p=BlA) = [ [ et (@ann
Lund (1994) shows that {®,} converges to a proper periodic limiting distribution, denoted by 7r,7( )

0 < 4 < 1, uniformly in the season in the sense that

Jdim, ve[o) Slllaplpz[ Ty € B1-7,(B)|=0

for all z > 0 if and only if p < 1.

To get a convergence rate for this model, we first note that {®,} is a pathwise ordered process.
When the distribution of & is mg(+), Lund (1994) shows that {®,} is rendered periodically stationary
in the sense that @, has distribution 7r,y( -). Hence, coupling arguments with a periodically

stationary version of the brocess can be used:
sup |IPx[ ®,,,€B]- 7r7(B)|_<_ P, T>n+y]<P, . [T> n], (5.2)

where T is the state {0} coupling time between an initial level z and a periodically stationary copy of
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a(n++v)

the process. Taking a supremum in (5.2) over v and multiplying by e gives
) sup  sup|P [ @, ., €B]-n(B)|<e"p T > n}. 5.3)
o € [0,1) Bp I :p{ n+'~/ ] ‘/( )I :c,ﬂ“o[ ] (

~ From the Markov inequality and the arguments that led to (3.3) and (3.4), we see that the right hand
side of (5.3) tends to zero as n — oo if E"'o[ ¢”70] is finite; hence, total variational convergence at the

exponential rate o is achieved uniformly in the season ¥ whenever E"'O[ e*70} < 0.

To identify values of o where E”o[ eaTO] < 0o, we make a comparison to a Lindley random

walk. Set ®} = X where X, has distribution my(-) and
@}, = max[®};_, +A(n)— A(n-1)-1, 0] (5.4)

for n > 1. Sample path comparisons show that 7o = inf{l > 0: ®, =0} < 7g =inf{n > 0: &} =0} for
each z > 0. Hence, E ¢"70] < 0o whenever E_[e"70] < co. Now use Example 7.3 of Lund and
™o "0
*
Tweedie (1995) to get E”o[ ¢*70] < co whenever a < —In(*) where ¢* = inf{ e""’E[eQIA1 It >0}

When p <1 and E[esA1 ] < oo for some s > 0, we note that ¥* < 1.

To see that —In(¢)*) is the best possible exponential convergence rate, note that, as in Section

4, (2.7) holds with k = A = 1. Following the proof of Theorem 2.3 and specializing to v = 0 gives
e*" supl P[®, € B]~- 7r,7(B) I‘Z Me®" P14 € (n-1,n]] (5.5)
B

where M = 7y((2,0)) iI[l(]; 1)7r,,/({0}). Here, we have used a seasonal strong Markov property along with
v €0,

the fact that Pg[ ® =0]1 7r,,/({0}) for every v €[0,1) (see Lund, 1994). From the boundedness of

n+y
A(+), one can show that my((2,00)) > 0 and ien{0 l)‘zr,y({o}) > 0; hence, M > 0 and (5.5) shows that expo-
v€[o,

nential convergence does not happen if lim sup,_, e*"P,[ 7 € (n-1,n]] > 0.

Now observe that P;[74 € (n-1,n]] > Pi[r5=n] where {®}} is governed by (5.4) except for
®;=1. Hence, lim sup,_, e "Pi[75=n]=0co whenever a exceeds the radius of convergence of
* * %k
E,[¢’°]. But the convergence radii of E,[¢""0] and Ey[e’"0 | are identical where 73* = inf{n > 0:
®; =0} (note that 7§ and 7§* differ only when z =0) and the latter is known to be —In(3)™) (see

Heathcote, 1967). Hence, —In(i*) is indeed the best exponential convergence rate possible. For other
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results on the convergence rates of Lindley random walks, see Veraverbeke and Teugels (1975, 1976).

We summarize our work in the following theorem.

THEOREM 5.1. Suppose that {®,} is the server workload process in a periodic queve with input {A,} as

described in (5.1). If p <1, M) is bounded over v € [0,1), and E| M ] < 0o for some s >0, then

lim e*" sup supl[PI[Q

€B]-n (B)|=0 5.6
n—oo ‘YE[O,I) B ] 7r7( )I ( )

n+y
~ for allz >0 and a < —In(¥*) where ¥* = inf{ t‘i""’E’[eM1 J: @« >0}. Furthermore, (5.6) fails for z =0

when a > —In(¥*). a

6. Application: Diffusion Models on [0,00). This section considers reflected diffusions where Theorem

2.2 is applicable. The process {®,} is governed on (0,00) by the stochastic differential equation
d®, = a(<I>t)dti+ o(®,)dB,, (6.1)

where ¢ is a C™ function with |'0'(:c) I < v for all z and {B,} is standard Brownian motion. We will not
describe behavior at {0} in further detail as it is irrelevant to our future arguments, but we assumé
that the reflection at {0} is done in such a manner so that {®,} has continuous sample paths. It is well
known (see Chapter VI of Lindvall (1992) for results and references) that {®,} is a pathwise ordered

Markov process that satisfies (2.1).

Working directly with the generator of the reflected process presents unnecessary complications.
Instead, let us consider an unreflected process {®;} that takes values on the whole of (— o0,00)

governed by
d®; = a(®;)dt + o(®})dB,.

Here, the domain of a and o are extended to (— co,00) in a smooth manner. We denote all quantities
related to {®;} with the superscript *. As Equation 5.5 in Chapter VI of Lindvall (1992) shows, when
{®,} and {®]} are driven with the same Brownian motion and ®,= &5 >0, ®, = &} up to the first

hitting time of {0}. Hence, 7( = 75 and convergence rates for {®,} can be obtained by studying {®;}.
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Ichihara and Kunita (1974) show that for any V with continuous first and second derivatives,

the unreflected generator A* satisfies
AV (2) = a@)V'(z) + 4 [0(2) V"(=). (6.2)
We analyze two separate versions of this model with different a(-).
(i) Affine Drift. Assume that a( ) satisfies
| a(z) < —a(l +z) (6.3)
for all z > 0 for some a > 0. If we choose V(z) =1+ z, we have that for z > 0,
A*V(z) = a(z) < —aV(z). (6.4)

From the remark following Lemma 3.2, choose s =c=a to get G,(a) <1+<z for all > 0. Hence,

G (a) <1+ =z also and, by Theorem 2.1 or 2.2, a is an exponential rate of convergence for {®,}.

The same approach can be used to investigate the exponential convergence of higher order
moments of the process. Let n>1 and consider polynomial solutions, V (z), to the drift equation

(6.4) which can be rewritten as
(L+2)Vi(2) 2V, (2) + [7?/20]V i (2) (6.5)

when (6.3) and |o(z)| < 7 are used.” Solutions to (6.5) may be constructed as V,(z) = L +z, V,(z) =

22+ (y?/a+ 1)z + 1, and for general n by

n—2 72 ! nl . 72 -l
—_.n E : B n— .
Vn(:c)—x +J—1-2-a' mz J+ 71! % +1 17+1-
We note that such solutions are nondecreasing C*° functions and that V (z)>1 for all n>1 and

z > 0. Thus, for s < a, we have from the remark following Lemma 3.2 that

*
T

V"(:l:) > (a - S)Ezz{J Oeﬂvn(q):)dt]

0

for £>0. But the same inequality holds for {®,} since the starred and unstarred processes are
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identical up to time 73, Equation 3.9 now gives
” P'(z,-)— 77”V < 2e““t[Vn(:c) + b/a] < o0.
n

Since V, (z) > a,, + B,,2" for some a,, §,, > 0, we obtain

| E,187] = n(e")| <25 [V o(2) +b/a} (6.6)

n

hence, exponential convergence of the polynomial moments of {®,} also occurs up to the exponential

rate a. Bounds for b in (6.6) will clearly depend on the behavior of the reflection of {®,} at zero.

Lastly, note that when a > 2y?, V(z) = exp(az/y?%) is also a solution to (6.4). Arguing as

before, we obtain

| Bl exp(a®,/7%)] ~ n(exp(az/7?))| < 2¢~°{exp(az/+?) +b/a] (6.7)

We summarize our work in the following theorem.

THEOREM 6.1. Suppose that {®,} is the reflected diffusion governed by (6.1) on (0,00) with a(z) <

—a(l+z) forallz>0 andlcr(z)|§ v for allz > 0. Then

(i) There ezists an invariant measure T with G_(a) < oo;

(#i) Convergence lo w occurs exponenlially al rate a in the sense of (1.1) and (2.2);

(#ii) The polynomial moments of {®,} converge in the sense of (6..6) and if a > 242, the ezponential
moments of {®,} converge in the sense of (6.7); in both, the behavior of the reflection at {0} is

relevant only through the constant b. a

We have given this result only as an example of the methodology, although it appears new and
of considerable interest in its own right. Clearly we could be much more delicate with our assump-
tions, and the result should remain the same: if the drift is more strongly negative than —a(1 + z),

then a is an exponential rate of convergence for the process.

(ii) Constant Drift. Consider the regulated Brownian motion model studied by Abate and Whitt

(1987). Here, a(z) = — p <0 and o(z) =1 and (6.2) gives
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AV (z) = - pV'(z) +5V"(2) (6.8)

for z > 0. Using V_ (z)=e™" in (6.8) gives 'V (z)= (m%/2 —mp)V, (z). Choosing m = g minimi-
zes (m?/2 —my) and gives AV (2) = —-(/,12/2)V”(a:). Hence, exponential convergence with rate at

least 1:2/2 is achieved for this process. Specializing to moments, we have from (3.9) that
2
| Pt )=y <272 (e 4 20/ 7, (6-9)
B

Applying the crude bound Vp(:c) > (pz)"/n! for £ >0 in (6.9) gives convergence of all polynomial
moments of {®,}:

2
/2
n

| Bl #7) = n(a)| <2t el 20, (6.10)

We will not explore the value of b here. This is the same convergence rate for the moments of {®,}
obtained in Corollary 1.1.2 of Abate and Whitt (1987). While our V-norm methods give moment

convergence of all subexponential functions, we note that the constants obtained in (6.10) are

considerably worse than those computed (with rather more effort) by Abate and Whitt (1987).

7.- Multivariate Monotonicities: A Tandem Quecue Application.

Finally, we consider a d-variate Markov process {®,} on R‘j_ = [0,oo)d and a function f: Ri -
[0,00). In queueing network applications, f might typically be the total customer population or work-
load in the network. In this section, we derive a convergence rate for f(®,) and apply the results to a

tandem queue.

Suppose that {®,} is pathwise ordered in each of its components (much less stringent
assumptions are possible) and suppose there is a function V: R‘_{_ - [1,00), nondecreasing in each

component, such that
AV(z) < —cV(z)+ bﬂ{od}(x)

where 04 = (0, . . ., 0) and c and b are positive real numbers. Let {®,} and {®}} denote initial level =

and stationary versions of the process respectively; since the process is pathwise ordered, T = inf{t > 0:
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®, = @, = 0} is a coupling time of {®,} and {®;}. The methods used to prove Theorem 2.2 also apply
to general spaces; hence, one obtains G (o) =E$[BGT°] < oo for all z € [Ri where, as before, 7y =

inf{t > 0: ®, = 09}; as in (3.9),
”Pt(:c, -)—7r"V§2e—°t[V(x)+b/c]<oo. (7.1)

With G (a) < oo, the proof of Theorem 2.1 can be easily adapted to the current setting. Thus, {®,}

converges to stationarity in a d-variate total variation sense:

. t —
Jim e sup_ |P,[®, € A]l-n(A)|=0. (7.2)
AeB(RY)

In many cases, the quantity of interest will be a scalar function of the multidimensional process. For
example, in the tandem queue below, the total queue size at time ¢ is formed from the coordinates of
{®,} with an f defined by f(z,,z,) = 2, + z,; here, the z; represent the queue lengths at each node.
The process {f(®,)} can be analyzed with the coupling mapping inequality (see pg. 13 of Lindvall,
- 1992). This inequality shows that if (7.2) .holds and f is a measurable function, then f(®,) converges
in total variation at the exponential rate o to a random variable with distribution f(X) where X has

distribution .

We now briefly apply these results by considering a pair of M/M/1 queues in tandem:
customers arrive as a Poisson stream with unit rate to the first queue, where they are serviced with
mean service time ui‘l. After service is completed at the first qu'eue, each customer immediately
departs aﬁd joins the second queue where the mean service time is p 1, After service is completed at
the second queue, the customers leave the system. This is a Jackson network and it is known that the

process is ergodic whenever the load condition p; = u,-—l < 1 is satisfied at each queue.
Geometric considerations from Meyn and Down (1994) suggest
V(xl,:r:z) - Axl-—l " B.‘L‘l+z2—1 1+ ‘)/A—oz(:r1 —I)B—ﬁ(zl +12—-1)

as a candidate drift function where A,B>1 and 7,0, > 0. Applying the generator to V (see Meyn

and Down, 1994) gives
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AV (zy,25) = (A= DA 4 (B-1)B1T27 o y(a—epP - )41 pPErtmD)
il > LA = DA (4 - AT g

+ g} B1-1)B"1+"27 4 (B8~ 1)a™ "1 p Pt
F2l(z, > 1)

The parameters in V can be determined from the network parameters numerically. For instaqce, when
py =3 and p, = 2, using the computer program Mathemalica, it is found that with o = 3/2, 8 = 3/10,
v=4/10, A=1.06, and B = 1.03, V satisfies AV (z;,2,) < —c(z;,2,)V(2q,2,) where for (z;,z,) #
(0,0), ¢(zy,z,) is lower bounded by 0.002 (approximately). Furthermore, for these parameter values,
one can check that V is nondecreasing in each coordinate. For large (z,,2,), ¢(z,, ;) is lower bounded
by approximately‘ 0.02; we believe that a more sophisticated argument would yield drift of this order of

magnitude for all (z,,z,) # (0,0).

Hence, this network converges exponentially with rate at least 0.002. The total queue pop-

ulation is obtained by adding the components of {®,}: f(z;,z,) =z, +z,. By the above arguments,

F(®,) converges at the exponential rate 0.002 as well. Finally, for convergence of moments, notice that

V satisfies V(x,, ;) > &f(xy,2,) where & =In(B)/B > 0. Hence, by (7.1),
. Jim | B[ £(8,)] - 7(f)] =0

for each z and s < 0.002 and the total queue population moments convergé up to rate 0.002 as well.
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