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Abstract—Prices in electricity markets are given by the dual
variables associated with the supply-demand constraint in the dis-
patch problem. However, in unit-commitment-based day-ahead
markets, these variables are less easy to obtain. A common
approach relies on resolving the dispatch problem with the
commitment decisions fixed and utilizing the associated dual
variables. Yet, this avenue leads to inadequate revenues to
generators and necessitates an uplift payment to be made by the
market operator. Recently, a convex hull pricing scheme has been
proposed to reduce the impact of such payments and requires the
global maximization of the associated Lagrangian dual problem,
which is, in general, a piecewise-affine concave function. In
this paper, we present an extreme-point-based finite-termination
procedure for obtaining such a global maximizer. Unlike standard
subgradient schemes where an arbitrary subgradient is used, we
present a novel technique where the steepest ascent direction
is constructed by solving a continuous quadratic program. The
scheme initiates a move along this direction with an a priori
constant steplength, with the intent of reaching the boundary
of the face. A backtracking scheme allows for mitigating the
impact of excessively large steps. Termination of the scheme
occurs when the set of subgradients contains the zero vector.
Preliminary numerical tests are seen to be promising and display
the finite-termination property. Furthermore, the scheme is seen
to significantly outperform standard subgradient methods.

Index Terms—Convex hull price, electricity markets, uplift
payments, nondifferentiable optimization, Lagrangian relaxation.

I. INTRODUCTION

CURRENTLY, all day-ahead electricity markets in
North America adopt a unit-commitment-based model

which explicitly takes into account each generator’s physi-
cal/operational constraints and allows offers to recognize start-
up, no-load and marginal costs. The operation and dispatch
mechanisms of these markets are similar to those of a tight
power pool under regulation: the quantity sold by each gener-
ator is determined by solving a centralized unit commitment
and economic dispatch problem, except that the costs in this
formulation are overridden by offer prices.
On the other hand, the price determination in these markets

remains an open question. The common practice is to derive
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prices, or “marginal-cost prices”, from the solution of the cor-
responding economic dispatch problem in which commitment
decisions are fixed. Note that these commitment decisions
are derived from an a priori solution of a unit commitment
problem. As a consequence, commitment-dependent start-up
and no-load costs are ignored in these prices and the payments
collected from the auction based on such prices may be insuffi-
cient to compensate the generators. To overcome this problem,
uplift payment mechanisms have been introduced, through
which additional side payments are made to the generators in
recognition of the costs incurred due to commitment decisions.
A possibly large amount of uplift payments is problematic
for both the operator and the market participants, since they
are neither transparent nor easy to justify. Furthermore, it is
observed that marginal-cost prices are no longer monotonically
increasing with demand. For instance, a high price does not
necessarily indicate a relatively high demand level; instead,
it may arise from the fact that generators with high offers
are selected and happen to set the hourly prices. Accordingly,
prices fail to assume their usual economic roles as reporters of
the alignment between supply and demand, or incentives for
adjusting supply and consumption levels [1]. Additionally, the
strong dependence of marginal-cost prices on the commitment
solution raise concerns regarding the equity, efficiency and
economic rationale of electricity markets [2], [3]. A further
concern is that size of the unit commitment problems often
prevents its exact solution. Often, the dual variables associated
with the corresponding dispatch problems, parameterized by
these commitment decisions, may vary dramatically.
“Convex hull pricing” has been suggested as an alternative

pricing scheme to overcome or mitigate these undesired prop-
erties [4], [5]. Instead of fixing the commitment decisions,
the convex hull price scheme is derived in a fashion in
which the commitment-dependent start-up and no-load costs
are explicitly considered. In fact, convex hull prices are non-
decreasing with respect to the demand, and lead to the min-
imal amount of total “opportunity-cost” uplift payments [5].
Recently, it has been shown that the solution to the convex hull
price problem can be obtained by solving the corresponding
Lagrangian dual of the the unit commitment problem [5].
The dual problem has been extensively studied in Lagrangian-
relaxation framework in last several decades [6]. One scheme
for solving this dual is the subgradient-based method. In such
techniques, subgradients in the dual space are obtained by
evaluating constraint violations in the primal space where
the associated primal variables are obtained by minimizing
the Lagrangian in the primal space. Under a diminishing
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steplength rule, the convergence of subgradient methods is
guaranteed. In practice, such techniques often tend to have
difficulty when the dual function is ill-conditioned and local
convergence behavior can deteriorate significantly. Extensions
of such schemes lie in the use of bundle methods that
incorporate memory in constructing convex combinations over
a historically aggregated set of subgradients. These issues are
exacerbated in power system applications where degeneracy
is a commonly observed challenge [7]. Various enhancements
has been incorporated into the subgradient-based framework
to improve the efficiency, such as the use of cutting-plane
methods [8], interior-point methods [9], bundle methods [10],
and surrogate gradient methods [11].
To the best of our knowledge, References [12], [13] are the

only papers focusing specifically on the computational tools
for convex hull pricing. In their pioneering work, subgradient
and simplex techniques are adopted in central cutting-plane
methods to generate “interior” points with less computational
burden and redundant constraints are pruned to further increase
efficiency. By shrinking the feasible region, such methods are
expected to avoid convergence to non-optimal solutions. Yet,
convergence behavior of this scheme appears to still be less
favorable, as parallel cutting planes are generated through the
iterations (see Fig 7 [13]).
The remainder of this paper contains five additional sections

and is organized as follows. In Section II, we present a
mathematical model for convex hull pricing. Section III is
devoted to analyzing the structure of the convex hull pricing
problem and the structural characteristics are exploited in
Section IV to develop an effective and efficient algorithm to
compute convex hull prices. Numerical results of the proposed
method are presented in Section V and the paper concludes
with some remarks and final thoughts in Section VI.

II. CONVEX HULL PRICING MODEL

In this section, we formulate a mathematical model of
day-ahead markets currently prevalent in North America,
based on which convex hull prices are defined and studied.
Consider an H period Day-Ahead Market (DAM) with S
generators. Let fs(us, ps

) be generator s’s offer function,
where us ∈ {0, 1}H denotes the on/off or commitment
status of generator s over the H periods. Furthermore, p

s
∈

({0} ∪ [pmin
s , pmax

s ])H denotes generator s’s energy dispatch
levels, which could be zero (if off) or between pmin

s and pmax
s ,

the maximal and minimal power output levels of generator s.
Currently, all DAMs in the US adopt an offer format where
fs(us, ps

) is piecewise linear with respect to p
s
and we use

the same offer format in our model.
Let Xs be the polyhedral operational region defined by

resource-based physical and/or operational constraints im-
posed on generator s. Let d ∈ RH denote the demand vector
over the H periods. Then the Unit Commitment Problem
(UCP) requires a set of commitment and dispatch decisions to
satisfy the demand in the least “bid cost” manner, while being
feasible with respect to physical and operational constraints.

Definition 1 (UCP). The UCP is defined as

min
us,ps

,∀s
∑S

s=1 fs(us,ps
)

st :
∑S

s=1 ps
= d,

(us,ps
) ∈ Xs, ∀s.

(1)

We define the value function as the value of the UCP,
parameterized by the demand, as follows:

Definition 2 (Value Function). The value function of the UCP
is defined as

v(d) � min
(us,ps

)∈Xs,∀s

{
S∑

s=1

fs(us,ps
)|

S∑
s=1

p
s
= d

}
. (2)

A salient characteristic of the value function is that, on the
set of d for which (UCP) is feasible, the value function is
lower semicontinuous and differentiable almost everywhere.
Indeed, the widely adopted marginal cost pricing model uses
gradient or subgradient information associated with the value
function as a candidate price.
On the other hand, the convex hull pricing scheme derives

prices from the convex hull of the value function rather than
the value function itself. The convex hull of a nonconvex
function is the largest convex function that does not exceed the
given function in value at any given point in the domain [14]
and is formally defined next.

Definition 3 (Convex Hull of the Value Function). The convex
hull of v(d) is defined as

vh(d) � inf{μ|(d,μ) ∈ conv(epi(v(d)))}, (3)

where epi(f) is the epigraph of a function f and conv(K)
denotes the convex hull of K .

The convex hull price is defined next.

Definition 4 (Convex Hull Price). The convex hull price,
denoted by ρh(d), is defined as the subgradient of the convex
hull of the value function or

ρh(d) ∈ ∂vh(d). (4)

To simplify notation, we suppress the dependence of the
convex hull price on d in the rest of this paper.

III. ANALYSIS OF CONVEX HULL PRICING PROBLEM

In this section, we investigate the structural characteristics
of the convex hull price problem for DAMs.

A. Convex Hull Price and Lagrangian Dual Problem

Obtaining subgradients of vh(d) is a challenging propo-
sition, since it necessitates computing the convex hull of a
function. To exacerbate matters, every point in the hull requires
the solution of a unit commitment problem, or effectively a
mixed-integer linear program. An alternate approach lies in
solving the Lagrangian Dual Problem instead.
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Definition 5 (Lagrangian Dual Problem of the UCP). Suppose
the Lagrangian dual function, L(ρ) is defined as

L(ρ) � min
(us,ps

)∈Xs,∀s

{
S∑

s=1

fs(us,ps
) + ρT

(
d−

S∑
s=1

p
s

)}
.

Then the Lagrangian dual problem is given by

max
ρ

L(ρ). (5)

The relationship between the Lagrangian dual problem and
the original convex hull pricing problem is made precise by
the next proposition [5], which is provided without a proof.

Proposition 6. Let ρ∗ be an optimal solution to (5). Then

ρ∗ ∈ ∂vh(d). (6)

B. Characteristics of the Lagrangian Dual Problem

It is obvious that the Lagrangian dual function, L(ρ), is
separable with respect to generators, and thus, the computation
of L(ρ) can be reduced to a collection of S sub-problems.
Furthermore, the Lagrangian dual function is concave and
allows for the use of cutting plane methods.
This paper stresses the problem characteristics resulting

from the piecewise linear format of the offers. Indeed, the the
piecewise linear format is part of the market design to make
the market clearing computationally possible. For the error
analysis of such approximation, we refer the readers to [15].
To facilitate our discussion, we define two sets as follow.

Definition 7 (Generators’s Auction-Surplus-Maximization
Quantity Set). Given a price vector ρ, the auction-surplus-
maximization quantity set associated with generator s is
defined as

Bs(ρ) � {p
s
|(us,ps

) ∈ argmax
(us,ps

)∈Xs

[ρTp
s
− fs(us,ps

)]}.
(7)

Note that the optimization problem specified in (7) involves
H binary and H continuous decision variables. Thus, we may
use CPLEX [16], a commercial solver for large-scale mixed-
integer linear and quadratic programs, capable of generating
and storing multiple solutions [16], to obtain extreme points
of Bs(ρ).

Definition 8 (Aggregated Auction-Surplus-Maximization
Quantity Set). Given a price vector ρ, the aggregated auction-
surplus-maximization quantity set is defined as

B(ρ) �
{

S∑
s=1

p
s
|p

s
∈ Bs(ρ), s = 1, . . . , S

}
. (8)

Note that Bs(ρ) and B(ρ) may be infinite, as a conse-
quence of the degeneracies in the auction-surplus maximiza-
tion problem. For example, if price coincides with marginal
cost for a certain segment of a generator’s piecewise linear
offer, then the generator is indifferent towards operating at
any point within the segment. As a result, the generator’s
auction surplus may be maximized over an interval, rather
than a point. Fortunately, given the piecewise linear format,

no matter what prices may be, the convex hull of the auction-
surplus-maximization quantity sets has a finite number of
extreme points. As a consequence, the maximization problem
in (7) becomes a finite-dimensional linear program, once the
commitment decisions, denoted by us, are given. The feasible
region of such an LP is determined by us and Xs. Let Θ(us)
denote the set of all vertices of the feasible region. Then, a
solution to the linear program is attained at either a vertex,
which is in Θ(us), or a convex combination of vertices, which
is in conv(Θ(us)). Define Φs and Φ as

Φs � ∪∀us
Θ(us) and Φ �

{
S∑

s=1

p
s
|p

s
∈ Φs, ∀s

}
, (9)

respectively. Next, we relate the convex hulls of Bs and B to
Bs ∩Φs and B ∩Φ.

Lemma 9. SupposeΦs and Φ are defined by (9). Then, Φs and
Φ are finite. Furthermore, conv(Bs(ρ)) = conv(Bs(ρ) ∩ Φs)
and conv(B(ρ)) = conv(B(ρ) ∩ Φ).

Proof: The finiteness of Φs follows from the finite num-
ber of vertices in a finite-dimensional LP. Since the number
of commitment decisions is finite, Φs is also finite since the
union is over a finite set.
Since Bs ∩ Φ ⊆ Bs, it follows that conv(Bs(ρ)) ⊇

conv(Bs(ρ) ∩ Φs). It suffices to show that conv(Bs(ρ)) ⊆
conv(Bs(ρ)∩Φs). Remember Bs(ρ)∩Φs gives all extreme-
point solutions. By the fundamental theorem of linear pro-
gramming, Bs(ρ) ⊆ conv(Bs(ρ) ∩ Φs), consequently,
conv(Bs(ρ)) ⊆ conv(Bs(ρ) ∩ Φs). Likewise, we can prove
the same conclusions hold for Φ, which is obtained by
aggregating elements in each generator’s Bs(ρ).
We refer the readers to [14] for a general proof of the

concavity of the dual. The concavity and piecewise linearity
of L(ρ)) for the present problem is shown next. Note that it
is likely that such a result may have been proved elsewhere,
given its simplicity, yet we have no precise reference.

Lemma 10. Consider L(ρ) as defined in Def. 5. Then L(ρ)
is a concave and piecewise linear function of ρ.

Proof: By definition, L(ρ) is given by

= min
(us,ps

)∈Xs,∀s

{∑S
s=1 fs(us,ps

) + ρT (d−∑S
s=1 ps

)
}

= ρTd+
∑S

s=1 min
(us,ps

)∈Xs

{
fs(us,ps

)− ρTp
s

}
= ρTd+

∑S
s=1 min

(us,ps
)∈Xs,p

s
∈Φs

{
fs(us,ps

)− ρTp
s

}
.

where the last equality holds since the optimum occurs at
least one of the vertices. Note for any given elements in Φs,
fs(us,ps

) − ρTp
s
becomes an affine function with respect

to ρ. Therefore L(ρ) is a point-wise minimization of finite
number of linear functions, which is concave and piecewise
linear.
The maximization of a concave and piecewise linear func-

tion may be formulated as an LP, whose optimum, if it exists,
is always attained at extreme points; however, the constraint
set requires enumerating all possible extreme points and such
an avenue is generally inadvisable.
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Proposition 11 (Necessary and Sufficient Optimality Condi-
tions for Convex Hull Price). Given a demand vector d, ρ is
a convex hull price for d if and only if

d ∈ conv(B(ρ)). (10)

Proof: From Lemma 10, for any element in Φs,
fs(us,ps

) − ρTp
s
is an affine function of ρ with gradient

−p
s
. Also, because set Φs is finite, by Corollary 2.6 in [17],

we obtain

∂L(ρ) = d−∑S
s=1 conv{ps

|p
s
∈ Bs(ρ)}

= {d− d̂|d̂ ∈ conv(B(ρ))}.
The necessary and sufficient conditions for ρ to be optimal

are 0 ∈ ∂L(ρ) [18], which is equivalent to d ∈ conv(B(ρ)).

IV. ALGORITHM

Based on the analysis in Section III, it emerges that a
convex hull price, denoted by ρ, is obtained when the load
vector lies in the convex hull of B(ρ). Intuitively, if this
were not the case, then this suggests a method in which
the convex hull of the aggregate auction-surplus-maximization
quantity set is iteratively moved towards the demand vector
by updating the price vector appropriately. In this section,
we begin by providing an outline of the algorithm and how
search directions for ρ may be efficiently computed. Then, we
provide a brief overview of steplength choice and backtracking
schemes. The section concludes with an illustrative example.

A. Algorithm Structure

In iterative algorithms, one often uses a merit function
to obtain a measure of progress. In this instance, an ap-
propriate choice would be the Euclidean distance between
the demand and the convex hull of the aggregated auction-
surplus-maximization quantity set. Notably, this merit function
is nonnegative and is zero at optimality.

Definition 12 (Distance between Demand and Convex Hull
of Aggregated Auction-Surplus-Maximization Quantity Set).
The distance between d and conv(B(ρ)), denoted by γ(ρ), is
defined as

γ(ρ) � ‖dp(ρ)− d‖, (11)

where dp(ρ) is the projection of d onto conv(B(ρ)), and
defined as

dp(ρ) � argmin
d̂(ρ)∈conv(B(ρ))

‖d− d̂‖. (12)

.

Since dp(ρ) is a projection of a point onto a convex set,
it is always uniquely defined. Furthermore, the hyperlane
{x|(d − dp(ρ))T (x − dp(ρ)) = 0} separates the quantity
space into two half-spaces: {x|(d − dp(ρ))T (x − dp(ρ)) ≥
0} and {x|(d − dp(ρ))T (x − dp(ρ)) ≤ 0}. Furthermore,
since the hyperlane also supports conv(B(ρ)), we have that
conv(B(ρ)) belongs to the latter half-space implying that
B(ρ) also belongs to the latter. We propose to update the

prices along the direction of vector d−dp(ρ), which coincides
with the steepest ascent direction.

Proposition 13. The vector d − dp(ρ) is the steepest ascent
direction of L(ρ).

Proof: See Theorem 1.11 in [18].
Note although the steepest ascent direction is selected as

the search direction in the scheme, our main purpose is not to
make the largest progress in terms of L(ρ). Due to the non-
differentiable nature of the L(ρ), myopic greedy algorithm
will lead to zigzag and introduce computational difficulties.
Instead, we choose such a direction because decrease in γ
is always possible along the steepest ascent direction until
it reaches zero, which is sufficient and necessary for global
optimality.
We propose to compute the steepest ascent direction by

solving the projection problem in (12). This is generally a chal-
lenging task since it requires the computation of conv(B(ρ)).
To facilitate this computation, we employ the extreme points of
conv(B(ρ)), which in turn require the solution of a large-scale
MIP problem. In order to further reduce the computational
burden, we obtain the extreme points of conv(B(ρ)) as an
aggregation of the extreme points of conv(Bs(ρ)).
Define {psk} � Bs(ρ) ∩ Φs with cardinality Ks, then

by Lemma 9, it contains all extreme points of conv(Bs(ρ)).
By doing this, we solve S smaller MIP sub-problems, one
for each generator, in each iteration instead of a large MIP
problem over S generators. Note that even with an extreme
point representation of conv(B(ρ)), the number of extreme
points may grow to an exponential level as the the number of
generators increases. The resulting projection problem can be
cast as the following convex quadratic program.

min
λsk,∀s,k

‖d −∑S
s=1

∑Ks

k=1 λskpsk‖2

st :
∑Ks

k=1 λsk = 1, ∀s
λsk ≥ 0, ∀s, k.

(13)

.
The solution to the above problem, in fact, gives the

projection we need.

Proposition 14. Let {λsk} solves (13), then∑S
s=1

∑Ks

k=1 λskpsk solves (12).

Proof: The proposition holds because the convex hull
operation and the sum are commutable. Therefore,

conv(B(ρ)) = conv(

{
S∑

s=1

p
s
|p

s
∈ Bs(ρ), ∀s

}
)

=

{
S∑

s=1

p
s
|p

s
∈ conv(Bs(ρ)), ∀s

}

=

{
S∑

s=1

p
s
|p

s
∈ conv(Bs(ρ) ∩ Φs), ∀s

}

=

{
S∑

s=1

Ks∑
k=1

λskpsk|
Ks∑
k=1

λsk = 1, ∀s;λsk ≥ 0, ∀s, k
}
.
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The number of decision variables in (13),
∑S

s=1 Ks, in-
creases at a linear rate with respect to the number of gener-
ators. Given the offers from electricity markets under normal
conditions, Ks = 1 for most generators: due to the large
distinctions of different generating technologies in terms of
economic merits and operational flexibility, most generators
are either operated at the maximum, or priced themselves out
of the markets. Accordingly, the scale of (13) remains small
and can be easily solved.
We are now ready to state our algorithm.

Algorithm 15 (Extreme-Point-Based Global Optimization
Technique).

1: Initialization: price ρ0, max steplength c > 0; iteration
index ν = 1; merit measure γ0 = ∞; search direction
Δ0 = 0.

2: while γν �= 0 do
3: Obtain Bs(ρ) by solving (7) for each s;
4: Compute dp(ρν) by solving (13);
5: Set γν = ‖d− dp(ρν)‖.
6: if γν < γν−1 , or dp(ρν) = dp(ρν−1) then

7: αν = c, Δν =
d− dp(ρν)

‖d− dp(ρν)‖ ;
8: ρν+1 = ρν + ανΔν .
9: else
10: Compute αν via linesearch along Δν−1 such that

an acceptable descent is obtained in γν (Algo. 16).
11: end if
12: ν = ν + 1;
13: end while

B. Steplength Selection

Standard subgradient schemes rely on diminishing
steplength rules that require a steplength sequence satisfying∑∞

ν=1 α
ν = ∞ and

∑∞
ν=1(α

ν)2 < ∞. Here, we choose an
alternate approach that takes advantage of the fact that we
obtain a descent direction with respect to γν . Note that in
general, such a descent requirement is not guaranteed when
an arbitrary subgradient is selected. Given such a property,
the scheme employs a linesearch along the obtained search
direction to ensure a monotonic decrease in γ.
When using Newton-based methods, the default steplength

is unity; this is chosen as the point from which the steplength
may be reduced till sufficient descent is made with respect to a
suitably defined merit function. In this setting, a user-specified
upper bound, denoted by c, is employed. If such a steplength
leads to an increase in γ, a backtracking-based linesearch is
adopted to generate a strict decrease of γ.
For the proposed backtracking scheme method to make

progress, we need to guarantee that (1) dp(ρν) = dp(ρν−1)
will not happen infinitely often (cycling); and, (2) when back-
tracking is adopted, αν leading a strict decrease in γ, always
exists and can be obtained. The first condition holds when
the primal UCP is feasible. Suppose dp(ρν) = dp(ρν−1)
forever, then the method will always update the price along
the same direction with a constant and positive steplength,
and this direction is always the steepest ascent direction at

each iteration. This only happens when either L(ρ) goes to
infinity, or the global optimum is already achieved, because of
the fact that L(ρ) is concave and piecewise linear. However,
feasibility of the UCP imposes upper bound on L(ρ) and if
the global optimum is achieved, γν = 0, and the algorithm
terminates. As mentioned earlier, the existence of a suitable
steplength is rooted in the fact that the search direction is the
steepest descent direction. Our exposition will be restricted
towards discussing the mechanics of our scheme, rather than
the theoretical underpinnings.

Algorithm 16 (Backtracking Linesearch Scheme).

1: Initialization. Set flag = ν−1; getΔflag and ρflag from
the main loop of the proposed algorithm;

2: while γν ≥ γflag do
3: Obtain α by solving

(ρflag + α(Δflag)Tdν − v(dν)

=(ρflag + α(Δflag)Tdflag − v(dflag);
(14)

Set ρν+1 = ρflag + αΔflag , ν = ν + 1;
4: Obtain Bs(ρ) by solving (7) for each s;
5: Compute dp(ρν) by solving (13);
6: Set γν = ‖d− dp(ρν)‖.
7: end while

The linesearch is triggered if the new candidate iterate is
in a new face and an increase in γ. In this case, the faces
of L(ρ) that are crossed by this overshooting are investigated
in the hope of reducing γ. The next example illustrates the
scheme.

C. An Illustrative Example

To illustrate how the proposed procedure works, we plot
the trajectory of iterates for a two-hour example in the space
of L(ρ), as shown in Figure 1(a). Since L(ρ) is piecewise
linear, the 4 sets of parallel lines actually represents 4 faces
of L(ρ). As shown in the plot, starting from prices of 80
$/MWh for both hours, the proposed method attain the global
optimum after 8 iterations. Note that L(ρ) is differentiable at
the first 4 iterates, and these points are generated along the
gradient direction. The 4th iterate returns to the same face of
L(ρ) as the starting point. Then backtracking is triggered, and
with reduced steplength, the 5th iterate is reached and lies at
the intersection of the two faces. In traditional sub-gradient
methods without backtracking, the iterates will oscillate be-
tween these faces. From the 5th iterate, the scheme determines
the steepest ascent direction that lies at the intersection of
the faces. Then, the scheme overshoots the optimal solution.
From the 6th iterate, the scheme returns to the 7th point
which is identical to the 5th. However, since the merit function
increases upon the return, backtracking is triggered and based
on the information of the 6th and 7th query points, the global
optimum is achieved in the next iteration. Note that when we
employ a standard subgradient scheme as in Figure 1(b), we
observe that the scheme takes a significantly longer time to
converge. The efficiency improvement can be largely assigned
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Fig. 1. (a) trajectory of query points of proposed method; (b) trajectory of
query points of subgradient method

to the improvements in steplength and direction selection. Ge-
ometrically, the algorithm updates solutions with the explicit
purpose of evaluating the extreme points of the dual function.

V. NUMERICAL TESTING

We present preliminary numerical results for the proposed
method in this section. All the numerical tests were carried
out on a PC with Intel Core i5 2.66 GHz processor with 6
GB RAM. We first use the proposed method to solve the
three-generator testing problems given in [13]. These examples
are carefully designed such that the duality gaps are always
zero. In these problems, there are no inter-temporal constraint,
such as the minimal up/down time constraints. We compare
the performance of the proposed method to the results of
subgradient-simplex based cutting plane method (SSCPM) and
the analytic center cutting plane method (ACCPM) from [13],
which, to the best of our knowledge, are the only methods ex-
plicitly designed to solve the convex hull pricing problem. We
compare the number of iterations as a measure of efficiency,
because the complexity of each iteration is almost the same
for all subgradient-based methods. Therefore, we expect the
CPU time to be proportional to the number of iterations. The
initial guess of the convex hull prices is set to be 80 $/MWh
for all hours in these examples, and the maximal steplength is

SSCPM ACCPM Proposed method
2-h problem 41 – 8
10-h problem 75 216 38
24-h problem 347 300 61

TABLE I
NUMBER OF ITERATIONS TO CONVERGE TO GLOBAL OPTIMUM

5 for these examples. The optimal solutions are omitted here
since the proposed method achieves the same solutions given
in [13]. The comparative results given in Table I show that the
proposed method converges much faster than both SSCPM and
ACCPM.
We also compare the proposed method for the 24-hour

problem with the general subgradient method and the steepest
ascent method with 20/ν diminishing steplength. Results of
the first 300 iterations are shown since these general methods
do not converge after an acceptable number of iterations or
converge to non-optimal points. In Figure 2, all methods
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Fig. 2. Value of the dual function through iterations

nearly obtain the global optimal dual value. If obtaining
the value of the dual is the main purpose, in an effort to
obtain a lower bound of the primal, all these methods provide
meaningful results. Notably, the proposed scheme displays a
finite termination property and more rapid convergence on the
problems tested. With the same diminishing steplength rules,
steepest ascent direction performs almost the same as arbitrary
sub-gradient direction in terms of the value. The dual optimal
values from the proposed method may not be monotonically
increasing for two reasons: first, the proposed method adopts
backtracking; second, the proposed method may jump from
one face of the dual function to the other one, these jumps are
kept as long as γ decreases.
Since the 3-generator problems are relatively straightfor-

ward, it can be independently verified that such problems
admit unique solutions. In Figure 3, we plot the norm of
the Euclidean distance from these solutions. It is seen that
the general methods display poor local convergence behavior
and premature termination may lead to significant error, as
a consequence of the flatness of the value function around
the optimum. Consequently, a small change in value may
correspond to a huge difference in the solution. This fact
also suggests that the methods effective for obtaining good
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Fig. 3. Price errors through iterations

approximations may not always be suitable for the convex
hull pricing problem.
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Fig. 4. Errors in terms of γ through iterations

To illustrate why the proposed methods are more efficient,
we plot γ, the Euclidean distance between the convex hull
of aggregated auction-surplus-maximization quantity set and
demand, in Figure 4. We can see that all the methods display
a non-monotone property while the proposed method corrects
this through backtracking. Indeed, all points that lead to
increased γ function are discarded in the proposed method.
Furthermore, the lower envelope of the plot is representative
of the accepted iterates for the proposed method. When only
the accepted iterates are considered (post backtracking), the
scheme does display a monotonically decreasing behavior in
error. In contrast, the traditional methods make little progress
after 100 iterations. We also note under the same diminishing
steplength rules, the steepest direction is slightly better than
the arbitrary sub-gradient direction, which implies a small
number of iterations hit the null measure non-differentiable
points. This can be explained by the fact that the “zigzag-
ging” is generally around the non-differentiable points. With a
diminishing steplength rule, the general methods are more and
more likely to arrive these points. Such observations can be
viewed as a numerical evidence of the convergence behavior
of these general methods, but the required number of iterations
makes them less practical.

3-unit 10-unit 26-unit
number of total iterations 61 236 102

number of backtracking iterations 26 181 67
CPU time (s) 73.1 990.2 1057.4

TABLE II
SCALABILITY OF THE PROPOSED METHOD TO POWER SYSTEMS SIZE

Numerical tests are also carried on the widely-used IEEE
10-unit and 26-unit systems, which include all standard con-
straints of unit commitment problem. Necessary technical data
are given in [19] and [20], respectively. We approximate
the quadratic cost curves in the original data by 4-segment
piecewise linear offer functions.
The scalability of the method is numerically demonstrated

by the comparison of the results of the 3-unit, 10-unit, and
26-unit testing systems, as shown in Table II. We observe that
the CPU time is roughly proportional to the number of units
times the number of iterations. This is because most of the
CPU time is spent on solving the optimization problem (7) and
this problem is solved for every unit during every iteration.
We also observe that the number of iterations does not grow
significantly with the size of problem. The 3-unit system
requires the least number of iterations, and a smaller fraction
of backtracking iterations. This is because the generators in
this system are less constrained. In fact, there is no inter-
temporal constraint in the 3-unit system, making the hourly
prices independent of each other. For more realistic systems,
such as the 10-unit and 26-unit systems, the commitment
decisions are strongly coupled from a temporal standpoint.
Therefore, both the total number of iterations and the frac-
tion of backtracking iterations increase. Another interesting
observation is that the 26-unit system actually converges faster
than the 10-unit one. While appearing counter intuitive, this
phenomenon can be explained by the fact that 26-unit system
has a wider generation technology mix, leading to a wider
offer price range, than the 10-unit system. Consequently, a
lot of generators either price themselves out of the market
or operate as base units, despite changing prices. In contrast,
the offer prices of each generator in the 10-unit system are
much closer to each other, which makes the system far more
sensitive to the prices changes across the iterations.
The performance of the method under different steplength,

as well as the robustness of the proposed method with respect
to the constant steplength rule, is tested on the 26-unit system.
In Figure 5, we plot the number of iterations needed to reach
the optimum with maximum steplength choices, denoted by c,
as 5, 10, 15, and 20. For each choice, three bars represent the
numbers of iterations for demand scaled to 95%, 100%, and
105% of the original data, where the lower part of each bar
represents the numbers of backtracking. As the figure shows, at
least two thirds of the iterations represent backtracking: these
iterates, although discarded, provide valuable information for
the succeeding iterations. Furthermore, the proposed method
shows a relatively consistent performance for different demand
profiles. On the other hand, the method is more sensitive to the
selection of c: larger steplength appear to require more number
of iterations to converge. In fact, more aggressive steplengths



8

Fig. 5. Number of iterations for different demand with different maximal
steplength

may move the iterates faster towards to the optimum, but may
also introduce a lot of overshooting that needs to be corrected
by backtracking. In reality, due to the strong daily, weekly and
seasonal pattern of the markets, we may have a relatively good
initial guess of the prices. In this case, a smaller steplength to
reduce overshooting may be a better choice. Of course, other
step length rules for the maximal steplength selection, such
as diminishing steplength, can also be incorporated into the
proposed method.

VI. CONCLUSION

Pricing is a key component of any electricity market design.
Before making any changes to pricing schemes, extensive anal-
ysis, simulation and experiments, are necessary to avoid pos-
sibly undesired effects. This paper provides a computational
tool to study convex hull prices. Traditional computational
methods for maximizing the Lagrangian dual, in general, are
characterized by poor local convergence and therefore cannot
meet the need of electricity markets to obtain prices in an
efficient fashion. In contrast, the proposed method exploits
the structural information of these markets, and achieves
significant gains in performance.
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