
Synchronization of Coupled Oscillators is a Game

Huibing Yin, Prashant G. Mehta, Sean P. Meyn and Uday V. Shanbhag

Abstract— The purpose of this paper is to understand phase
transition in noncooperative dynamic games with a large num-
ber of agents. Applications are found in neuroscience, biology,
economics, as well as traditional engineering applications. The
focus of analysis is a variation of the large population LQG
model of Huang et. al. 2007 [6], comprised here of a controlled
nonlinear N-dimensional stochastic differential equation model,
coupled only through a nonlinear cost function. The states
are interpreted as the phase angle for a collection of non-
homogeneous oscillators, and in this way the model may be
regarded as an extension of the classical coupled oscillator
model of Kuramoto.

A deterministic PDE model is proposed, which is shown
to approximate the stochastic system as the population size
approaches infinity. Key to the analysis of the PDE model is
the existence of a particular Nash equilibrium in which the
agents ‘opt out’ of the game, setting their controls to zero,
resulting in the ‘incoherence’ equilibrium. Methods from dy-
namical systems theory are used in a bifurcation analysis, based
on a linearization of the PDE model about the incoherence
equilibrium. A critical value of the control cost parameter
is identified: Above this value, the oscillators are incoherent;
and below this value (when control is sufficiently cheap) the
oscillators synchronize. These conclusions are illustrated with
results from numerical experiments.

I. I NTRODUCTION

The dynamics of a large population of coupled hetero-
geneous nonlinear systems is of interest in a number of
applications (e.g., neuroscience, communication networks,
power systems, markets). One important and possibly the
simplest class of models for this problem is the Winfree
model ofN coupled oscillators,

dθi(t) = ωi dt +
κ
N

N

∑
j=1

ψ•(θ j(t),θi(t))dt + σ dξi(t),

whereθi(t) is the phase of theith-oscillator at timet, ωi is
its natural frequency,ξi(t) is the standard Wiener process,
ψ•(θ j ,θi) models the influence of thej th-oscillator from the
population ofN oscillators, andκ is the coupling parameter.

An example is the Kuramoto model [7] in which
ψ•(θ j ,θi) = sin(θ j −θi) for eachi, j. It is assumed here as
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in the Kuramoto model that the frequencyωi is drawn from
a distributiong(ω) with support onΩ := [1− γ,1+ γ]. The
parametersγ andκ are used to model the heterogeneity and
the strength of network coupling, respectively.

The dynamics can be visualized using a bifurcation di-
agram in the(κ ,γ) plane, which in particular illustrates
the emergence of a phase transition. The stability boundary
κ = κc(γ) shown on the left hand side of Fig.1 provides
an illustration of the phase transition: The oscillators be-
have incoherently forκ < κc(γ), and synchronize forκ >
κc(γ). That is, the oscillators synchronize if the coupling
is sufficiently large. In the former incoherent setting, the
oscillators rotate close to their own natural frequency and
hence the trajectoryθi(t) is approximately independent of
the population. In the synchronized setting each oscillator
rotates with a common frequency.
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Fig. 1. Bifurcation diagrams. The Kuramoto model withσ2/2= 0.05 (left),
and the coupled model considered in this paper withσ2/2 = 0.05 (right).

The phase transition is important in a number of ap-
plications. For example, in thalamocortical circuits in the
brain, transition to the synchronized state is associated with
diseased brain states such as epilepsy [13], [15].

The objective of this paper is to model and interpret the
phase transition from the perspective of noncooperative game
theory. We define the game formally:

Consider a set ofN oscillators. The model for theith

oscillator is given by

dθi(t) = (ωi +ui(t))dt + σ dξi(t),

where ui(t) is the control input. Suppose theith oscillator
minimizes its own performance objective:

η (POP)

i (ui ;u−i) = lim
T→∞

1
T

∫ T

0
E[c(θi ;θ−i)+ 1

2Ru2
i ]ds, (1)

where θ−i = (θ j ) j 6=i , c(·) is a cost function,u−i = (u j) j 6=i

andR models the control penalty. The form of the function
c and the value ofR are assumed to be common to the
entire population. ANash equilibriumin control policies is
given by {u∗i }N

i=1 such thatu∗i minimizesη (POP)

i (ui;u∗−i) for
i = 1, . . . ,N.



In general, establishing the existence and uniqueness of
Nash equilibrium for largeN is a challenging problem. In
this paper, following an approach first employed in [6], we
investigate a distributed control law wherein theith oscillator
optimizes by using local information consisting of (i) its
own state (θi) and (ii) themass-influenceof the population.
The idea is that in the limit of large population size (as
N → ∞), the population affects theith oscillator in a nearly
deterministic fashion. The distributed control law is obtained
via optimization with respect to this deterministic (but not a
priori known) mass influence.

Three types of analyses are presented in this paper. We
first examine the infinite-oscillator limit, and subsequently
investigate the implications for the finite-oscillator model:

1. The infinite oscillator limit.A limiting model is construct-
ing consisting of two partial differential equations (PDEs):
(i) An Hamilton-Jacobi-Bellman (HJB) PDE (12) that de-

scribes the solution of minimizing (1) under the assump-
tion of a known deterministic mass influence.

(ii) A Fokker-Planck-Kolmogorov (FPK) equation (15) that
describes the evolution of the population density with
optimal control input obtained from the solution of (i).

The two PDEs are coupled via the mass influence term (16).
It arises as an averaged cost function, where the average is
based on the solution of (ii). The averaged cost function is
used in the HJB equation in (i). The solution of the HJB
equation describes the distributed control law.

2. ε-Nash equilibrium for finite N. Following the method-
ology outlined in [6], we establish that the distributed control
law is an ε-Nash equilibrium for the stochastic dynamic
game with a finite number of oscillators (N < ∞). This im-
plies that any unilateral deviation by an individual oscillator
can at best improve the performance by a small (ε = O( 1√

N
))

amount when the population sizeN is large.
The final analysis is grounded in the large population limit:

3. Transition from incoherence to synchrony.A bifurcation
diagram is obtained in the(R,γ) plane for the infinite limit
model. The plot shown on the right in Fig.1 depicts a phase
transition: ForR> Rc, the oscillators are incoherent, and for
R < Rc the oscillators synchronize. That is, the oscillators
synchronize when the control is sufficiently cheap.

In addition to the work of [6], methods to construct
approximate solutions to distributed control problems or
dynamic games using related methods can be found in [1],
[8], [16], [3], [11], [5], [9].

The remainder of this paper is organized as follows. A
description of the SDE and PDE models is contained in
Sec. II , and Sec.III contains analysis of the game for a
finite number of oscillators. Bifurcation analysis appearsin
Sec. IV, which is illustrated with results from numerical
experiments in Sec.V. Conclusions are contained in Sec.VI.

II. OBLIVIOUS EQUILIBRIA

We begin with a description of the coupled oscillator
model, associated optimal control problems, and the pro-
posed infinite-oscillator approximation.

A. Finite oscillator model

We consider a population ofN oscillators competing in a
noncooperative game as defined in the Introduction (see (1)).
The dynamics of theith oscillator are described by the
stochastic differential equation,

dθi = (ωi +ui(t))dt + σ dξi , i = 1, . . . ,N, t ≥ 0 (2)

whereθi(t) is the phase of theith oscillator at timet, ui(t) is
the control input, and{ξi} are mutually independent standard
Wiener processes. The standard deviationσ is independent
of i.

For eachi, the constant frequencyωi is independent of
time — It is assumed that at timet = 0, theN scalars{ωi}
are chosen independently according to a fixed distribution
with density g, which is supported on an interval of the
form Ω = [1− γ,1+ γ] for some γ < 1. In the numerical
calculations that follow the density was taken to be uniform,
namelyg(ω) = (2γ)−1 for |ω −1| ≤ γ.

We seek control that is decentralized and of the following
form: For eachi and t the controlui(t) depends only on
θi(t), and perhaps some aggregate information, such as the
mean value of{θ j(t)}N

j=1. This amounts to a dynamic game,
whose exact solution is infeasible for largeN.

Instead we seek an approximation of the form described
in [16] or [6]. This approximation is based on an infinite-
population limit similar to those introduced in this prior work
and others (e.g., [14]). The approximation is based on a
sequence of steps:

(i) We construct a density functionp that is intended
to approximate the probability density function for the
individual oscillators. For anyi and anyt > 0, the den-
sity p(·, t, ωi) is intended to approximate the probability
density of the random variableθi(t), evolving according
to the stochastic differential equation (2).

(ii) We obtain an approximation for the cost functionc. It
is assumed that the cost functionc appearing in (1) is
separable, as shown below:

c(θi ;θ−i) =
1
N ∑

j 6=i

c•(θi ,θ j), (3)

with c• a non-negative function onR2. If N is large,
the sum in (3) is expected to be nearly deterministic when
the frequencies{ωi} are independently sampled according
to the densityg. The law of large numbers suggests the
approximation ofc(ϑ ;θ−i(t)) by c̄(ϑ ,t), where

c̄(ϑ ,t) :=
∫

ω∈Ω

∫ 2π

θ=0
c•(ϑ ,θ )p(θ ; t,ω)g(ω)dθ dω . (4)

(iii) For the scalar model (2) with cost c̄(ϑ ,t) depending
only on ϑ = θi , the game reduces to independent optimal
control problems, and the Nash equilibrium reduces to an
oblivious equilibrium [16].

Remark 1:The notion of anoblivious equilibriumwas
introduced by Weintraub et al. [16] as a means of approx-
imating a Markov perfect equilibrium (MPE) of a dynamic



game with a large number of agents. The individual agents
are oblivious to the state of the entire system and make
their control decisions based only on local state variables,
together with a consistently defined average. In the limit of
large population size, this is justified using the LLN.

In the following subsection we develop the “oblivious”
solution described in (iii). We then turn to the PDE approx-
imation in (i) that defines the approximate cost in (ii).

B. Optimal control of a single oscillator

The cost function is time dependent, of the form,

c̄(θi , t)+ 1
2Ru2

i , θ ,u∈ R. (5)

It is assumed that ¯c is a periodic function oft, with period
denotedτ. The dynamics remain of the affine form,

dθi = (ωi +ui(t))dt + σ dξ , t ≥ 0. (6)

The average cost is defined as the limit supremum,

ηi(ui ; c̄) = limsup
T→∞

1
T

∫ T

0
E[c̄(θi(s),s)+ 1

2Ru2
i (s)] ds (7)

The goal is to minimizeηi over all adapted controls. We let
η∗

i denote the minimal cost.
The pairX(t) = (θi(t), t) may be viewed as a controlled

Markov process on the product space[0,2π ] × [0,τ], so
that cost is only a function of this state and the control
u. Moreover, for continuous state feedbacku(t) = ϕ(X(t))
this Markov process ishypoelliptic, for which there is a rich
ergodic theory. In particular, because of the compact state
space,η∗

i exists and is independent of the initial state [10].
The associated average-cost optimality equations (or HJB

equations) are given by,

min
ui

{c̄(θ , t)+ 1
2Ru2

i +Dui hi (θ , t)} = η∗
i (8)

wherehi(θ ,t) is the relative value function andDu denotes
the controlled generator, defined forC2 functionsg via,

Dug = ∂tg+(ωi +u)∂θ g+
σ2

2
∂ 2

θθ g.

where∂t and∂θ denote the partial derivative with respect to
t andθ , respectively, and∂ 2

θθ denotes the second derivative
with respect toθ .

The relative value functionhi(θ , t) can be expressed as
the integral,

hi(θ , t) =

∫ ∞

t
E[c̄(θi(s),s)+ 1

2Ru∗i
2(s)−η∗

i | θi(t) = θ ] ds,

with u∗i (s) the optimal control. Because the cost is quadratic
in ui , and the dynamics linear inui, the optimal control in
state feedback form is expressedu∗i (t) = ϕi(θ , t), where

ϕi(θ , t) := − 1
R

∂θ hi(θi , t). (9)

Substitutingu∗i (t) into (8) gives the nonlinear PDE,

∂thi + ω∂θ hi =
1

2R
(∂θ hi)

2− c̄(θ , t)+ η∗
i −

σ2

2
∂ 2

θθ hi. (10)

C. PDE model

We now provide a complete description of the PDE model
that is intended to approximate the stochastic model for large
N. We begin by noting that for a single oscillator model,
the evolution of the densityp with state-feedback control
u = ϕ(θ ,t) is defined by the controlled PDE,

∂t p+ ∂θ ((ω + ϕ(θ ,t))p) =
σ2

2
∂ 2

θθ p. (11)

The notation in the large population limit is a minor variant
of theN = 1 solution: The relative value function is denoted
by h(θ ,t,ω), which is a solution to the HJB equation,

∂th+ ω∂θ h =
1

2R
(∂θ h)2− c̄(θ ,t)+ η∗− σ2

2
∂ 2

θθ h. (12)

The average optimal cost is a function ofω :

η∗(ω) = lim
T→∞

1
T

∫ T

0

∫ 2π

0
[c̄(θ ,t)+

1
2R

(∂θ h)2]p(θ ; t,ω)dθ dt.

(13)
Using the associated optimal feedback control law,

ϕ(θ ,t,ω) := − 1
R

∂θ h(θ ,t,ω), (14)

the FPK equation that defines the evolution of density
(denoted asp(θ ; t,ω)) is given by,

∂t p+ ω∂θ p =
1
R

∂θ [p(∂θ h)]+
σ2

2
∂ 2

θθ p. (15)

The only difference thus far is notational:hi(θ ,t) is the
value function forN = 1 with a single frequencyωi , and
h(θ ,t,ω) is the value function for a continuum of oscillators,
distinguished by their natural frequencyω . Such is the case
because we haveassumedc̄(θ ,t) on the right hand-side
of (12) is a known deterministic periodic function that is
furthermore consistent across the population.

The consistency is enforced here using the integral (4).
The two PDEs are coupled through this integral that defines
the relationship between the cost ¯c and the densityp:

c̄(ϑ ,t) =

∫

Ω

∫ 2π

0
c•(ϑ ,θ )p(θ ; t,ω)g(ω)dθ dω . (16)

D. Incoherence

The system of equations (12) - (16) may have multiple
solutions. Suppose that the costc• introduced in (3) is of
the form c•(ϑ ,θ ) = c•(ϑ − θ ). In this case we single out
the incoherencesolution defined by

h(θ ,t,ω) = h0(θ ) := 0 p(θ ; t,ω) = p0(θ ) :=
1

2π
(17)

The control law (14) setsu(t) ≡ 0.
Consider the special case,

c•(ϑ ,θ ) =
1
2

sin2
(

ϑ −θ
2

)

. (18)

The cost ¯c defined in (4) is constant in this solution,

c̄(ϑ ,t) =
1
2

1
2π

∫

Ω

∫ 2π

0
sin2

(

ϑ −θ
2

)

g(ω)dθ dω =
1
4
,



which coincides with the average costη∗(ω) = η0 := c̄ for
all ω ∈ Ω. This value is approximately consistent with the
finite-N model. When each control is set to zero we obtain
dθi(t) = ωi dt + σ dξi(t) for eachi, which results in average
cost independent ofi,

lim
T→∞

1
T

∫ T

0
E[c(θi(t);θ−i(t))]dt =

N−1
N

η0

We return to this example in the bifurcation analysis of
Sec. IV. There is a trade-off between reducing the cost
associated withθi 6= θ j , and reducing the cost of control.
These competing costs suggest that a qualitative change in
optimal control may arise when the parameterR varies from
∞ to 0. In AppendixVII-B we propose a numerical algorithm
to compute a candidate optimal solution for the PDE model.
We find that the algorithm converges to the incoherence
solution wheneverR is above a critical threshold (see Fig.3).

III. ε -NASH EQUILIBRIUM

In this section we assume that we have solved the optimal
control problem for the PDE model described in Sec.II-C.
We assume moreover that the resulting average cost ¯c given
in (16) is periodic int. We show that in the stochastic model
with N < ∞, the resulting control solutionϕ given in (14)
defines anε-Nash equilibrium, withε → 0 asN → ∞.

A. Infinite population limit

To obtain the limiting model we impose additional as-
sumptions on the stochastic model. Recall that the{ωi}
are chosen to be i.i.d. (and independent of{ξi}) from a
distribution with densityg. We assume moreover that the
initial conditions are chosen randomly, with{(θi(0),ωi)}
i.i.d., independent of{ξi}, with common marginal distribu-
tion (θi(0),ωi) ∼ p(θ ;0,ω)g(ω).

Suppose thatN < ∞, and that each oscillator is controlled
using the control solution in (14):

uo
i (t) = − 1

R
∂θ h(θ (t), t,ω)

∣

∣

∣

∣

ω=ωi

. (19)

By construction,

ηi(u
o
i ; c̄) ≤ η(ui ; c̄) (20)

for all adapted controlsui . On account of the decentralized
nature of the control law, the processes{θi(t)} are them-
selves independent. Hence analysis is brought down to the
single oscillator of the form described in Sec.II-B.

For a giveni with a fixed ω = ωi , the evolution of the
conditional distributionp(·; t,ωi) of the phase is described
by the FPK equation (11). The evolution of the unconditional
distribution of a particularθi is thus given by averaging this
over ω with respect to the densityg.

These arguments justify the averaging described in the pre-
vious section. Define the sequence of empirical distributions
via,

ΓN(A×B) :=
1
N

N

∑
i=1

1l{ωi(t) ∈ A, θi(t) ∈ B}, A⊂ Ω,
B⊂ [0,2π ].

With this decentralized control law we obtain from the LLN,

lim
N→∞

ΓN(A×B) =

∫

ω∈A

∫

ϑ∈B
g(ω)p(ϑ ,t,ω)dϑ dω .

B. Comparison of Nash and oblivious control laws

We denote byθ o
i (t) the solution to the SDE (2), obtained

using the oblivious controlui = uo
i (t) defined in (19), and

θ o
−i = (θ o

1 , . . . ,θ o
i−1,θ

o
i+1, . . . ,θ

o
N). The conditional mean of

(3) is used as an approximate cost function for a single
oscillator,

c̄(N)
i (ϑ ,t) := E[c(θi(t);θ o

−i(t)) | θi(t) = ϑ)]. (21)

In Lemma3.1 this approximate cost function is used to make
precise the nature of approximation in going from cost as the
summation (3) in the finite oscillator case, to the integral (16)
in the PDE limit. The proof follows from the CLT applied
to the samples{(θi(0)}.

Lemma 3.1:Consider ¯c(ϑ ,t) in (16) and c̄(N)
i (ϑ ,t)

in (21). In the limit of largeN, for eachi = 1, . . . ,N,

max
ϑ∈[0,2π ]

[

limsup
T→∞

1
T

∫ T

0

∣

∣c̄(ϑ ,s)− c̄(N)
i (ϑ ,s)

∣

∣ds

]

= O(
1√
N

)

The proof of the next result is straightforward (see
also [6]).

Lemma 3.2:Consider a single oscillator control prob-
lem (7) with cost function ¯c(θi ,t)+ 1

2Ru2
i and the associated

optimal controlu∗i . Let c̄ε(θ ,t) denote some perturbation of
c̄(θ ,t) for which there is anε > 0 such that,

max
ϑ∈[0,2π ]

[

limsup
T→∞

1
T

∫ T

0

[

∣

∣c̄(ϑ ,s)− c̄ε(ϑ ,s)
∣

∣

]

ds

]

≤ ε.

Thenηi(u∗i ; c̄ε) ≤ η(ui ; c̄ε)+2ε, for any adapted controlui.

We can now establish the main result of this section:
Theorem 3.3:The oblivious control{uo

i } is an ε-Nash
equilibrium for (1): For any adapted controlui,

η (POP)

i (uo
i ;uo

−i) ≤ η (POP)

i (ui ;uo
−i)+O(

1√
N

).

Proof: From (20), ηi(uo
i ; c̄)≤η(ui ; c̄). Theε-Nash prop-

erty follows from Lemma3.2 because ¯c(N)
i (ϑ ,s) approxi-

mates ¯c(ϑ ,s) in the limit of largeN (see Lemma3.1).

IV. B IFURCATION ANALYSIS OF PDES

In the remainder of the paper we present a finer analysis
of the coupled equations (12) – (16) for a particular choice
of c•. Our main goal is to establish a transition from inco-
herence to synchrony as the control penalty parameterR is
decreased beyond a critical value. The analytical conclusions
are illustrated with results from numerical experiments.

Throughout the remainder of the paper we restrict to the
cost functionc• defined in (18).

Solutions to the equations (12) - (16) are investigated here
using the method of bifurcation theory; the parameterR is
used as the bifurcation parameter. The following assumptions
are imposed on the model, and on any solution(p,h)
considered in our analysis:



(A1) The densityg is uniform onΩ := [1− γ,1+ γ].
(A2) The functionsp, h are periodic inθ :

h(θ ,t,ω) = h(θ +2π , t,ω),

p(θ ; t,ω) = p(θ +2π , t,ω) , θ ∈ [0,2π ], t ≥ 0, ω ∈ Ω.

We single out one solution obtained in Sec.II-D: The
incoherence solution. We denote this solution byz0(θ ) :=
(h0(θ ), p0(θ ))T. The existence of a bifurcating solution
branch is investigated via analysis of a linearization about
z0. The spectral analysis of the linearization is used to obtain
the bifurcation point as a critical value ofR= Rc(γ).

To verify the conclusions of bifurcation analysis, the
solution of the PDE is obtained numerically by using an
algorithm presented in AppendixVII-B . Numerical results
described in Sec.V show that the incoherent solution is a
limiting fixed-point of the algorithm whenR > Rc. Below
the critical value ofR, the incoherent solution is no longer
’stable.’ The numerical algorithm yields a periodic traveling
wave solution that is interpreted as the synchrony solution.

For both types of solutions, the cost function ¯c is periodic
in time andθ : For some value ofτ > 0,

c̄(θ +2π , t + τ) = c̄(θ , t), θ ∈ R, t ≥ 0.

We find thatτ = 2π in the numerical experiments consid-
ered below, which under (A1) coincides with the mean value
of ω over Ω.

A. Linear analysis

The linearization of the equations (12) - (16) is taken about
the equilibrium incoherence solutionz0 = (h0, p0). A pertur-
bation of this solution is denotedz0 + z̃= (h0, p0)+ (h̃, p̃).
Since p = p0 + p̃ is a probability density, the perturbation
satisfies the normalization condition

∫ 2π
0 p̃(θ ; t,ω)dθ = 0 for

any t,ω . Since the relative value function is only defined to
a constant, we also impose a similar normalization condition
for h:

∫ 2π
0 h̃(θ ,t,ω)dθ = 0 for any t,ω .

Whenz̃ is small, its evolution is approximated by the linear
equation,

∂
∂ t

z̃(θ , t,ω) = LRz̃(θ , t,ω),

where

LRz̃(θ , t,ω) :=

(

−ω∂θ h̃− c̄− σ2

2 ∂ 2
θθ h̃

−ω∂θ p̃+ 1
2πR∂ 2

θθ h̃+ σ2

2 ∂ 2
θθ p̃

)

(22)

and c̄(θ ,t) =

1
2

∫

Ω

∫ 2π

0
sin2

(

θ −ϑ
2

)

p̃(ϑ ; t,ω)g(ω)dϑ dω (23)

On taking the Laplace transform of (22) we can obtain the
representationZ = [Iλ −LR]−1z̃(0), whenever the inverse
exists. We say thatλ ∈ C is in the spectrum ofLR if
the inverse[Iλ −LR]−1 does not exist as a bounded linear
operator onL2([0,2π ]×Ω).

The associated eigenvector problem is given by,

λZ = LRZ,

whereZ(θ ,λ ,ω) = (H(θ ,λ ,ω),P(θ ,λ ,ω)). Key to analysis
is the Fourier series expansion with respect toθ ,

H =
+∞

∑
k=−∞

Hk(ω)eikθ , P =
+∞

∑
k=−∞

Pk(ω)eikθ , (24)

where dependence onλ is suppressed for notational ease.
The two normalization conditions giveP0(ω) = H0(ω) = 0.

Let C̄ denote the Laplace transform of ¯c (see (23)). Using
the Fourier series expansion

C̄(θ ) = −π
2 ∑

k={1,−1}
eikθ

∫

Ω
Pk(ω)g(ω)dω . (25)

Using (24) - (25) yields a diagonal decomposition of the
linear operator

LR =
⊕

k

L
(k)
R ,

where eachL (k)
R acts on the pair(Hk,Pk)

T. The individual
operators have the explicit form

L
(1)
R :=

(

σ2

2 −ω i π
4

∫

Ω g(ω)dω
− 1

2πR −σ2

2 −ω i

)

L
(k)
R Zk :=

(

σ2

2 k2−kω i 0

− k2

2πR −σ2

2 k2−kω i

)

, k≥ 2,

andL
(−k)
R = L (k)

R.
The spectrum ofLR is given by the union of spectrum of

L
(k)
R , k = ±1,±2, . . .. In general, the spectrum include both

continuous and discrete parts. The continuous spectrum of
L

(k)
R correspond to pointsλ in the spectrum such that,

(i) The operatorλ I −L
(k)
R is injective,

(ii) The range of operatorλ I −L
(k)
R is dense inL2(Ω).

For background see [12].
In AppendixVII-A we establish the following characteri-

zation of the spectrum:
Theorem 4.1:For the linear operatorLR : L2([0,2π ]×

Ω) → L2([0,2π ]×Ω),

(i) The continuous spectrum equals the union of sets
{S(k)}∞

k=−∞ where

S(k) :=
{

λ ∈ C
∣

∣λ = ±σ2

2
k2−kω i for all ω ∈ Ω

}

.

(ii) The discrete spectrum coincides with the discrete spec-
trum of L

(k)
R for k = ±1.

The points inS(k) are in one-one correspondence with
the frequencies in the distributiong(ω). That is, for each
ω0 ∈ Ω, the point±σ2

2 k2−kω0i ∈ S(k) lies in the continuous
spectrum. On the complex plane,S(k) comprises of two
line segments, one in the left half-plane and the other in
the right half-plane. The main thing to note is that the
continuous spectrum does not change with the value ofR
and is moreover bounded away from the imaginary axis
for k = ±1,±2, · · · . So, the focus of the analysis and the



numerical study that follows is on the discrete spectrum for
k = ±1.

For k= 1, let (H1,P1)
T denote the eigenvector correspond-

ing to an eigenvalueλ . We assumeλ /∈S(1), the set contained
in continuous spectrum. We have:

λH1(ω) =

(

σ2

2
−ω i

)

H1(ω)+
π
4

∫

Ω
P1(ω)g(ω)dω , (26)

λP1(ω) = − 1
2πR

H1(ω)−
(

σ2

2
+ ω i

)

P1(ω). (27)

We formally obtain from (27),

P1(ω) = − 1
2πR

H1(ω)

λ + σ2

2 + ω i

and on substituting this into (26),

H1(ω) = − 1

8R(λ − σ2

2 + ω i)

∫

Ω

H1(ω)

λ + σ2

2 + ω i
g(ω)dω .

(28)

The solution H1,P1 ∈ L2(Ω) becauseλ /∈ S(1), i.e., λ ±
σ2/2 + ω i 6= 0 for all values of ω ∈ Ω. Denote b :=
∫

Ω
H1(ω)

λ+ σ2
2 +ω i

g(ω)dω which is a constant independent ofω .

This givesH1(ω) = −b
(

8R(λ − 1
2σ2 + ω i)

)−1
. Substituting

this into (28) yields the characteristic equation forλ :

1
8R

∫

Ω

g(ω)

(λ − σ2

2 + ω i)(λ + σ2

2 + ω i)
dω +1 = 0. (29)

For k = −1, the eigenvalue is complex conjugateλ̄ .

V. NUMERICAL RESULTS

We present here results from computational experiments
based on the coupled equations (12) - (16).

We fix σ2/2= 0.05 throughout, and the cost parameterR
is treated as a variable in the bifurcation analyses that follow.

A. Eigenvalue as a function of R

The characteristic equation (29) was solved numerically
to obtain a path of eigenvalues as a function ofR.

Fig. 2 (a) depicts a locus of eigenvalues obtained for a
family of models parameterized byR; γ is fixed at 0.05. For
R∼ ∞ there are a pair of complex eigenvalues at±σ2

2 − i
(for k = 1). As the parameterR decreases, these eigenvalues
move continuously towards the imaginary axis. The critical
value Rc is defined as the value ofR at which these two
eigenvalue paths collide on the imaginary axis, resulting in
an eigenvalue pair of multiplicity 2. The eigenvalues splitas
R is decreased further, and remain on the imaginary axis for
R< Rc. The real and the imaginary part of the two eigenvalue
paths originating at±σ2

2 − i are depicted in Fig.2 (b). This
eigenvalues also have their complex conjugate counterparts
(for k = −1) that are not depicted for the sake of clarity.

In (a) and (b) the value ofγ is fixed at 0.05. The critical
valueRc is a function of the parameterγ. Fig. 2 (c) depicts
a plot of Rc(γ) as a function ofγ. In the (R,γ) plane,
this defines a boundary separating potentially two kinds of
behavior – incoherence and synchrony.

The linear analysis suggests appearance of the synchrony
solution via the Hamiltonian Hopf bifurcation atR= Rc [4].
A rigorous justification for existence will require nonlinear
analysis that is not presented here. Instead, we present
numerical results on these two types of solution obtained
for values ofR greater than and less than the critical value
Rc.

In the remainder of this section we restrict toγ = 0.05,
which givesRc(γ) = 39.1. The computations that follow are
based on the waveform relaxation algorithm described in
AppendixVII-B .

In numerical experiments the uniform distributiong(ω) =
(2γ)−1 on the intervalΩ = [1− γ,1+ γ] is approximated
by a uniform distribution on three discrete frequencies{1−
γ,1,1+γ}. The value ofγ = 0.05 is sufficiently small so that
the numerical results are very similar to those obtained using
a finer discretization ofΩ. The PDEs are discretized along
the θ coordinate using the method of Fourier collocation [2]
with 64 collocation points in the interval[0,2π ].

B. Average cost bifurcation diagram

Fig. 3 depicts a numerically obtained bifurcation diagram
for the average costη(ω) as a function of the bifurcation
parameterR.

R−1/2

η(ω)

0. 1 0.15 0. 2 0.25 0. 3 0.35
0. 1

0.15

0. 2

0.25

 

ω = 0.95

ω = 1

ω = 1.05

R > Rc

η(ω) = η0

R < Rc

η(ω) < η0

Fig. 3. Bifurcation diagram: the average cost as a function of 1/
√

R.

For R > Rc = 39.1, the average cost was found to be
η(ω) = η0 = 1

4, which is consistent with the incoherence
solution of Sec.II-D. ForR< Rc the average cost is reduced,
and for suchR the value ofη(ω) < η0 depends upon the
frequencyω . Its minimal value is attained uniquely when
ω = 1, which is the mean frequency underg.

C. Value functions, control, and density evolution

The relative value functionh(θ ,t,ω) and probability den-
sity p(θ ; t,ω) were computed for a range of values ofR.

Population

Density
 
0 π 2π

h(θ, t, ω)

θ−2

−1

0

1

2

3

4

ω = 0.95

ω = 1

ω = 1.05

Value functions

Fig. 4. Relative value function forR= 10, and the population densityp
for a particular value oft.
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imaginary parts of the two eigenvalue paths asR decreases. (c)Rc(γ) as a function ofγ .

The incoherence solutionh0 ≡ 0 was obtained forR≥ 60;
the algorithm was very slow to converge asR was reduced
to values nearRc.

Fig. 4 depicts the relative value function as a function of
θ obtained forR = 10 < Rc, and for a particular value of
t. Experiments revealed that the relative value function and
the solution to the FPK equation arise as a traveling wave
solution. In particular, the solutionp has the form,

p(θ ; t,ω) = p(θ −at;0,1), h(θ ,t,ω) = h(θ −at,0,ω)

Moreover, the wave speed was equal toa = 1, independent
of ω , which coincides with the mean frequency with respect
to the densityg.
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Fig. 5. Comparison of the control obtained from solving (12) - (16) and
the Kuramoto model.

Recall the control law (19) is u∗(t) = − 1
R∂θ h∗(θ ,t,ω),

which depends upon the frequencyω . The control laws
obtained for a fixedt and several values ofω are depicted
in Fig. 5 in relation to the population density. Note that
the control is zero whenω = 1, and θ lies at its mean
value (equal toπ in this figure, for the particular value oft
chosen).

The control law that gives rise to the Kuramoto oscillator
is defined by,u(Kur)

i (θi , t) = κ
N ∑N

j=1sin(θ j(t)−θi). Given the
previous numerical results usingR = 10, it is reasonable
to conjecture that asN tends to infinity this can be ap-
proximated byu(Kur)

i (θi , t) = κ0sin(ϑ0 + t −θi), for a phase
variable ϑ0 and a gainκ0 that is proportional toκ . This
is because in the synchrony state, the individual oscillators
rotate with a common frequency 1. That is,θ j (t) ≈ t + ϑ0, j

for someϑ0, j ∈ [0,2π ]. Without noise, such a solution is in
fact exact for the Kuramoto oscillators. Fig.5 shows that
the optimal control law is in fact “close” tou(Kur)

i whenκ0,
t, andϑ0 are chosen appropriately.

VI. CONCLUSIONS

This paper aggregates concepts and techniques from non-
linear dynamical systems, game theory, and statistical me-
chanics to provide new tools for understanding complex
interconnected systems, and new bridges with prior research.
The key messages are,

(i) Distributed control laws are tractable for a class of large
population dynamic games with separable cost structures.
This conclusion is based on an approximation of the
complex stochastic system using a deterministic PDE
model, similar to the mean-field approximation that is
central to the study of interacting particle systems.

(ii) The rich theory surrounding the classical Kuramoto
model can be extended to the dynamic game setting intro-
duced here to explain phase transitions in these systems. In
particular, methods from bifurcation theory can be adopted
to analyze multiple equilibria and their stability properties.

The proposed methods are expected to be relevant to
applications involving large population of controlled hetero-
geneous nonlinear systems.

VII. A PPENDIX

A. Proof of theorem4.1

We provide a proof only for|k| ≥ 2. The proof fork=±1
is conceptually similar but some of the calculations are more
complex.

We consider the equation

(λ I −L
(k)
R )

(

H(ω)
P(ω)

)

=

(

υ(ω)
ζ (ω)

)

whereυ(ω), ζ (ω) ∈ L2(Ω). Explicitly, this gives

(λ − σ2

2
k2 +kω i)H(ω) = υ(ω),

(λ +
σ2

2
k2 +kω i)P(ω) = − 1

2πR
H(ω)+ ζ (ω).

Formally the inverse, if it exists, is given by

H(ω) =
1

λ − σ2

2 k2 +kω i
υ(ω), (30)

P(ω) =
1

λ + σ2

2 k2 +kω i

[

− 1
2πR

H(ω)+ ζ (ω)

]

. (31)



The proof thatL (k)
R is 1-1 for all λ ∈ C is now straight-

forward. If υ(ω) = 0 thenH(ω) = 0 in L2(Ω) using (30) and
if additionally ζ (ω) = 0 thenP(ω) = 0 in L2(Ω) using (31).

Using the formula for the inverse, the inverse operator is
bounded if and only ifλ /∈ S(k). If λ = λ0 = σ2

2 k2−kω0i ∈
S(k) for someω0 ∈ Ω, thenλ0− σ2

2 k2 +kω i = 0 for ω = ω0

and the inverse
(

λ0− σ2

2 k2 +kω i
)−1

in (30) is not bounded.
The converse also follows similarly.

Finally, the range ofλ0I −L (k) is dense inL2(Ω) because
consider for example, the space ofC1 functions withυ(ω0)=
υ ′(ω0) = 0.

B. Algorithm to solve coupled PDEs

In this section, we present a numerical algorithm to obtain
a solution of coupled PDEs (12,15), subject to the static
equation (16). For numerical implementation, we consider
the finite-horizon optimal control problem on[0,T]. The
value function is denoted,

h(T)(θ ,t; c̄) = min
u(·)

E

∫ T

t
[c̄(θ ,s)+ 1

2Ru2(s)]ds. (32)

Comparing (1) or (7) with (32), we are interested in the limit
as T → ∞. It follows from the discussion in Sec.II-B that
the cost given in (13) is the limit of the normalized value
functions,

η∗(ω) = limsup
T→∞

1
T

h(T)(θ , t; c̄).

The HJB equation for (32) is given by

∂th
(T) + ω∂θ h(T) =

(∂θ h(T))2

2R
− c̄(θ , t)− σ2

2
∂ 2

θθ h(T), (33)

with boundary conditionh(T)(θ ,T) = 0. Comparing (33)
with (12), we see that the only difference between the two
HJB equations is the termη on the RHS of (12).

One issue with numerical solution of (33) is that it must be
solved in backward time, starting att = T. To obtain a causal
implementation, we introduce a new coordinates= T−t, and
denoteV(θ ,s) = h(T)(θ , t) for t ∈ [0,T].

We thereby obtain the coupled system of equations,

∂sV = ω∂θV − (∂θV)2

2R
+ c̄(θ ,T −s)+

σ2∂ 2
θθV

2
(34)

∂t p = −ω∂θ p+
1
R

∂θ [p(∂θV)]+
σ2

2
∂ 2

θθ p, (35)

c̄(θ ,t) =
∫

Ω

∫ 2π

0
c•(θ ,ϑ)p(ϑ ; t,ω)g(ω)dϑ dω . (36)

with initial condition V(θ ,0) = h(T)(θ ,T) = 0, and with
p(θ ;0) given.

s

tForward time

Backward time c(θ, T − s)

u(θ, t) = −

1
R

∂θV (θ, s)

Fig. 6. Information flow of the numerical algorithm.

The system is solved by using a method based on wave-
form relaxation — the algorithm is illustrated in Fig.6. It is
initialized with some initial guess for the densityp0(θ ,t)
over the time horizon[0,T]. The following sequence of
computations are performed in thekth iteration,

(i) Use pk(θ ,t) to evaluate the ¯c(θ ,t) using (36). Denote
it as c̄k(θ ,t).

(ii) With c̄k(θ ,t), simulate the causal representation (34) to
obtain the solutionVk and henceh(T)

k .

(iii) The optimal control law isuk(θ ,t) = − 1
R∂θ h(T)

k (θ ,t).
(iv) Use the control lawuk(θ ,t) to obtain the new density

pk+1(θ ,t) from the solution of the FPK equation (35).

This is then repeated withk replaced byk+1.
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