Synchronization of Coupled Oscillators is a Game
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Abstract— The purpose of this paper is to understand phase
transition in noncooperative dynamic games with a large num
ber of agents. Applications are found in neuroscience, bioby,
economics, as well as traditional engineering applicatiocn The
focus of analysis is a variation of the large population LQG
model of Huang et. al. 2007 [6], comprised here of a controlte
nonlinear N-dimensional stochastic differential equation model,
coupled only through a nonlinear cost function. The states
are interpreted as the phase angle for a collection of non-

homogeneous oscillators, and in this way the model may be

regarded as an extension of the classical coupled oscillato
model of Kuramoto.

A deterministic PDE model is proposed, which is shown

to approximate the stochastic system as the population size

approaches infinity. Key to the analysis of the PDE model is
the existence of a particular Nash equilibrium in which the
agents ‘opt out’ of the game, setting their controls to zero,
resulting in the ‘incoherence’ equilibrium. Methods from dy-
namical systems theory are used in a bifurcation analysis,dsed
on a linearization of the PDE model about the incoherence
equilibrium. A critical value of the control cost parameter
is identified: Above this value, the oscillators are incohesnt;
and below this value (when control is sufficiently cheap) the
oscillators synchronize. These conclusions are illustrat with
results from numerical experiments.

|. INTRODUCTION

0.1
The dynamics of a large population of coupled hetero- °
geneous nonlinear systems is of interest in a number pf

in the Kuramoto model that the frequenay is drawn from

a distributiong(w) with support onQ :=[1—y,1+y|. The
parametery andk are used to model the heterogeneity and
the strength of network coupling, respectively.

The dynamics can be visualized using a bifurcation di-
agram in the(k,y) plane, which in particular illustrates
the emergence of a phase transition. The stability boundary
K = Ke(y) shown on the left hand side of Fig. provides
an illustration of the phase transition: The oscillators be
have incoherently fox < kc(y), and synchronize fok >
Kc(y). That is, the oscillators synchronize if the coupling
is sufficiently large. In the former incoherent setting, the
oscillators rotate close to their own natural frequency and
hence the trajectorg (t) is approximately independent of
the population. In the synchronized setting each oscillato
rotates with a common frequency.
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g. 1. Bifurcation diagrams. The Kuramoto model with/2 = 0.05 (left),

applications (e.g., neuroscience, communication netsyorkand the coupled model considered in this paper wiffi2 = 0.05 (right).
power systems, markets). One important and possibly the

simplest class of models for this problem is the Winfree The phase transition is important in a number of ap-

model of N coupled oscillators,

Z‘l’ (6i(®)

where6 (t) is the phase of théM-oscillator at timet, ¢ is

da(t) = wdt + = 6i(t))dt + odéi(t),

plications. For example, in thalamocortical circuits ireth
brain, transition to the synchronized state is associatéu w
diseased brain states such as epilepsy [13], [15].

The objective of this paper is to model and interpret the
phase transition from the perspective of noncooperativeega

its natural frequencyg;(t) is the standard Wiener process,theory. We define the game formally:

Y*(6;,6) models the influence of thg"-oscillator from the

Consider a set oN oscillators. The model for théh

population ofN oscillators, andk is the coupling parameter. gscillator is given by

An example is theKuramoto model[7] in which
W*(6;,6) = sin(6;
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—6) for eachi, j. It is assumed here as

and Com-

der(t) = (@ + ui(t)) dt + o d& 1),

where ui(t) is the control input. Suppose th& oscillator
minimizes its own performance objective:

10" (uiu ) = lim / +iRPds (1)

where 8_j = (6;)ji, c(-) is a cost functionu_j = (uj);i
and R models the control penalty. The form of the function
¢ and the value ofR are assumed to be common to the
entire population ANash equilibriumin control policies is
given by {u3N | such thatuf minimizes n®(u;;u*;) for
i=1,...,N.
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In general, establishing the existence and uniqueness Af Finite oscillator model
Nash equilibrium for largeN is a challenging problem. In \ye consider a population & oscillators competing in a

this paper, following an approach first employed in [6], W&,qncooperative game as defined in the Introduction (83e (
investigate a distributed control law wherein iffeoscillator The dynamics of thet" oscillator are described by the

optimizes by using local information consisting of (i) itsgiochastic differential equation,

own state @) and (ii) themass-influencef the population.

The idea is that in the limit of large population size (as d& = (w +ui(t))dt+0dé, i=1,....N, t>0 (2)
N — o), the population affects th# oscillator in a nearly

deterministic fashion. The distributed control law is ohéal where6(t) is the phase of thé" oscillator at time, ui(t) is

the control input, and&;} are mutually independent standard

via optimization with respect to this deterministic (but @o . o
priori known) mass influence. \é\f/lener processes. The standard deviatiois independent

S i
Three types of analyses are presented in this paper. WeFor eachi, the constant frequencs is independent of
first examine the infinite-oscillator limit, and subsequyent

: : he implications for the fini i ot time — It is assumed that at tinte= 0, theN scalars{w }
Investigate the implications for the finite-oscillator are chosen independently according to a fixed distribution

1. The infinite oscillator limit. A limiting model is construct-  with density g, which is supported on an interval of the
ing consisting of two partial differential equations (PDES  form O — [1—y,1+y] for somey < 1. In the numerical
() An Hamilton-Jacobi-Bellman (HJB) PDELP) that de-  calculations that follow the density was taken to be uniform
scribes the solution of minimizingl) under the assump- namelyg(w) = (2y)~? for |w—1| <.
tion of a known deterministic mass influence. We seek control that is decentralized and of the following
(i) A Fokker-Planck-Kolmogorov (FPK) equation) that  form: For eachi andt the controlui(t) depends only on
describes the evolution of the population density withg(t), and perhaps some aggregate information, such as the
optimal control input obtained from the solution of ().  mean value of 6;(t) 5'\‘:1- This amounts to a dynamic game,
The two PDEs are coupled via the mass influence téih (  whose exact solution is infeasible for lartye
It arises as an averaged cost function, where the average idnstead we seek an approximation of the form described
based on the solution of (ii). The averaged cost function i& [16] or [6]. This approximation is based on an infinite-
used in the HIB equation in (i). The solution of the HJBpopulation limit similar to those introduced in this prioovk
equation describes the distributed control law. and others (e.g., [14]). The approximation is based on a
2. e-Nash equilibrium for finite N. Following the method- sequence of steps:
ology outlined in [6], we establish that the distributedtoh (i) We construct a density functiop that is intended
law is an e-Nash equilibrium for the stochastic dynamic to approximate the probability density function for the
game with a finite number of oscillatordl (< ). This im- individual oscillators. For any and anyt > 0O, the den-
plies that any unilateral deviation by an individual ostitlr  sity p(-,t, «y) is intended to approximate the probability
can at best improve the performance by a sneait @(ﬁ)) density of the random variabl@(t), evolving according
amount when the population si2&is large. to the stochastic differential equatiof)(
The final analysis is grounded in the large population limit(ii) We obtain an approximation for the cost functionlt
3. Transition from incoherence to synchrony bifurcation ~ is assumed that the cost functienappearing in 1) is
diagram is obtained in théR, y) plane for the infinite limit ~ separable, as shown below:

model. The plot shown on the right in Figl.depicts a phase 1

transition: ForR > R, the oscillators are incoherent, and for c(6;6-) =5 > (6, 6)), 3)
R < R; the oscillators synchronize. That is, the oscillators I71

synchronize when the control is sufficiently cheap. with ¢* a non-negative function of®2. If N is large,

In addition to the work of [6], methods to construct the sum in ) is expected to be nearly deterministic when
approximate solutions to distributed control problems orthe frequencie$aw } are independently sampled according
dynamic games using related methods can be found in [1]to the densityg. The law of large numbers suggests the
[8], [16], [3], [11], [5], [9]. approximation ofc(J; 6_i(t)) by ¢(3,t), where

The remainder of this paper is organized as follows. A - 21
description of the SDE and PDE models is contained in C(,t) 3=/ / c*(8,0)p(6;t,w)g(w)dodw.  (4)
Sec.Il, and Sec.lll contains analysis of the game for a J0e/6=0
finite number of oscillators. Bifurcation analysis appeiars
Sec. IV, which is illustrated with results from numerical
experiments in Sed/. Conclusions are contained in S&a.

(iii) For the scalar model2) with costc(3,t) depending
only ond = &, the game reduces to independent optimal
control problems, and the Nash equilibrium reduces to an

1. OBLIVIOUS EQUILIBRIA oblivious equilibrium [16].

We begin with a description of the coupled oscillator Remark 1:The notion of anoblivious equilibriumwas
model, associated optimal control problems, and the praatroduced by Weintraub et al. [16] as a means of approx-
posed infinite-oscillator approximation. imating a Markov perfect equilibrium (MPE) of a dynamic



game with a large number of agents. The individual agents. PDE model

are oblivious to .the state of the entire system and. make \we now provide a complete description of the PDE model
their control decisions based only on local state variableg,; s intended to approximate the stochastic model fgielar
together with a consistently defined average. In the limit of \\e begin by noting that for a single oscillator model,

large population size, this is justified using the LLN.  {he eyolution of the density with state-feedback control
In the following subsection we develop the “oblivious™,, — ¢(g.t) is defined by the controlled PDE,

solution described in (iii). We then turn to the PDE approx-
imation in (i) that defines the approximate cost in (ii). Ap+de ((w+¢(8,1)p) = O—Zzigep. (11)
) ) . ’ 2
B. Optimal control of a single oscillator The notation in the large population limit is a minor variant
The cost function is time dependent, of the form, of the N = 1 solution: The relative value function is denoted
6,1 + %qu’ 0.ucR. ) by h(6,t, w), which is a solution to the HIB equation,

2
It is assumed that is a periodic function of, with period dh+ wdgh = i(zigh)z—(ie,t) +n*— 0—0§eh. (12)
denotedr. The dynamics remain of the affine form, 2R 2

The average optimal cost is a function eof

dé = (w +ui(t))dt+odé, t>0. (6) LT em L
* S 2 .
The average cost is defined as the limit supremum, () _T“Lnoo?/o /0 [ae’t)Jrﬁ(aeh) ]p(e,t,w)d(zdt.)
13
ni(u;C) = |imsup% T E[G6/(5),9) + %qu(s)] ds (7) Using the associated optimal feedback control law,
T—o0 JO
1
The goal is to minimizey; over all adapted controls. We let $(6,t,w) = —ﬁagh(e,t,w), (14)

;" denote the minimal cost.

The pairX(t) = (6(t),t) may be viewed as a controlled
Markov process on the product spaf®?2m] x [0, 1], SO
that cost is only a function of this state and the control
u. Moreover, for continuous state feedbaaft) = ¢ (X(t))
this Markov process ifypoellipti for which there is a rich The only difference thus far is notationdk(6,t) is the
ergodic theory. In particular, because of the compact stal e function forN = 1 with a single frequenl:yq, and
space);” exists and is independent of the initial state [10]y) g ¢ ) s the value function for a continuum of oscillators,

The associated average-cost optimality equations (or HyRsinguished by their natural frequenay Such is the case
equations) are given by, because we havassumedc(8,t) on the right hand-side

min{ae,t)+%le+9uihi(G,t)}:ni* (8 of (12 is a knOV\_/n deterministic periodic_function that is
ui furthermore consistent across the population.
whereh;(6,t) is the relative value function an@, denotes ~ The consistency is enforced here using the integtal (

the controlled generator, defined f6f functionsg via, The two PDEs are coupled through this integral that defines
the relationship between the casand the densityp:

_ - 21
c(ﬁ,t):/Q/o ¢*(9,0)p(6:t, w)g(w)dOdw.  (16)

the FPK equation that defines the evolution of density
(denoted a(0;t,w)) is given by,

1 o?
Gp+wdep =00 [P(deN)] + - 0ggP.  (15)

0-2
D9 = &g+ (W +Uu)deg+ 709299.

whered: anddgy denote the partial derivative with respect to
t and 8, respectively, an@Z, denotes the second derivativeD. Incoherence

with respect to6. The system of equations?) - (16) may have multiple
The relative value functiom;(6,t) can be expressed assolutions. Suppose that the cast introduced in 8) is of
the integral, the formc*(&,0) = c*(9 — 0). In this case we single out

00 Lo w2 i} the incoherencesolution defined by
n(0.0) = [ EEI6(9),9)+ 3Ru*(5)—ni | B(1) = 6] ds

with u(s) the optimal control. Because the cost is quadratic
in uj, and the dynamics linear ig;, the optimal control in  The control law {4) setsu(t) = 0.

h(6,t,w) =hy(0) :=0 p(6;t,w) = po(0) := %T (17)

state feedback form is expressedt) = ¢i(0,t), where Consider the special case,
1 _
$i(6,) 1= —=dohi(61). © ¢(9.0) = 5sir? <19_29> . (18)
Substitutinguy (t) into (8) gives the nonlinear PDE, The costcdefined in €) is constant in this solution,

_ L . 0% _ 11 [ 27 ,(9-0 1
dh.+w09h._ﬁ(09hl) —¢(8,t) +n; —7099h.. (10) C(B’t)zﬁﬁ/g/o sir? (T) g(w)dedw:Z,



which coincides with the average cagt(w) = o :=c¢ for  With this decentralized control law we obtain from the LLN,
all w e Q. This value is approximately consistent with the )

finite-N model. When each control is set to zero we obtain ,\l,'LnoorN(AX B) = /weA 3689(‘*)) p(d,t, w) dd dow.

dé (t) = wdt+ odé(t) for eachi, which results in average

g . B. Comparison of Nash and oblivious control laws
cost independent df

LT N1 We denote _b)ﬁf’(t) the solution to the_SDEzﬁ, obtained
lim _/ E[c(6i(t); 6 (t))]dt = —no using the oblivious control; = uP(t) defined in (9), and
T=e TJo N 69 = (69,...,8°,,6%,,...,62). The conditional mean of
We return to this example in the bifurcation analysis of3) is used as an approximate cost function for a single
Sec. IV. There is a trade-off between reducing the cos@scillator,
associated withg # 6;, and reducing the cost of control. —(N) i . 0o
These competing cosjts suggest that a qualitative change in G (9,0) = Ele(B(1): 05 (1) [ 8i(1) = 9)]. (1)
optimal control may arise when the paramed®eraries from In Lemma3.1this approximate cost function is used to make
o to 0. In AppendixVIIl-B we propose a numerical algorithm precise the nature of approximation in going from cost as the
to compute a candidate optimal solution for the PDE modesummation 8) in the finite oscillator case, to the integrabj
We find that the algorithm converges to the incoherende the PDE limit. The proof follows from the CLT applied
solution wheneveR is above a critical threshold (see F&). to the sampleg(6(0)}.
Lemma 3.1:Consider c¢{(d,t) in (16) and ch)(S,t)
in (22). In the limit of largeN, for eachi =1,... N,
In this section we assume that we have solved the optimal

IIl. &-NASH EQUILIBRIUM

control problem for the PDE model described in SedC. max [Iimsup1 /T\aﬁ,s)—éim(ﬁ,s)\ds = O(i)
We assume moreover that the resulting average cgsten gelo2m [ 1w T Jo VN
in (16) is periodic int. We show that in the stochastic model |
with N < o, the resulting control solutiog given in (L4) The proof of the next result is straightforward (see
defines are-Nash equilibrium, withe — 0 asN — oo, also [6]).

o o Lemma 3.2:Consider a single oscillator control prob-
A. Infinite population limit lem (7) with cost functionc{8,t) + 1RU? and the associated

To obtain the limiting model we impose additional as-optimal controlu;’. Let ¢Z(6,t) denote some perturbation of
sumptions on the stochastic model. Recall that foe} ¢(8,t) for which there is are > 0 such that,
are chosen to be i.i.d. (and independent{df}) from a [

distribution with densityg. We assume moreover that the max

. 1 /T .
9el0,2rm |Imsup? 0 [!CTB,S)—C (19,8)”d5} <eEe.

T—o

initial conditions are chosen randomly, witf(6(0),w)}
i.i.d., independent of &}, with common marginal distribu- Thenn;(u’;c®) < n(u;;c*) + 2¢, for any adapted contral;.

tion (6(0), @) ~ p(8;0,w)g(w). u
Suppose thall < «, and that each oscillator is controlled We can now establish the main result of this section:
using the control solution in1¢): Theorem 3.3:The oblivious control{u’} is an &-Nash
1 equilibrium for (1): For any adapted contraf,
u’(t) = —=dgh(B(t),t, . 19
|() R 6 ( ()v ) )w:aq (19) ni(pop)(uio;ugi) < ni(POP)(ui;ugi)‘i‘o(iN)-
By construction, Proof: From 20), ni(u?; ¢) < n(u;;C). Thee-Nash prop-

0. . erty follows from Lemma3.2 becausec™ 3,8) approxi-
MU’ ) = N (i) (20) matesc(d,s) in the limit of largeN (seeI Le(mm)ae.l). n
for all adapted controls;. On account of the decentralized
nature of the control law, the processgf(t)} are them- i _ )
selves independent. Hence analysis is brought down to theln the remainder of the paper we present a finer analysis
single oscillator of the form described in Seé&B. of the coupled equationd ?) — (16) for a particular choice
For a giveni with a fixed w = «, the evolution of the of c*. Our main goal is to establish a transition from inco-
conditional distributionp(-;t, ) of the phase is described herence to synchrony as the control penalty paranfetsr
by the FPK equationl(l). The evolution of the unconditional decreased beyond a critical value. The analytical conmhssi
distribution of a particulag, is thus given by averaging this are illustrated with resu!ts from numerical experlmgnts.
over w with respect to the density. Throughout the .rema_lnder of the paper we restrict to the
These arguments justify the averaging described in the prg@St functionc® defined in (8). _ _
vious section. Define the sequence of empirical distrimstio ~ Solutions to the equations) - (16) are investigated here

IV. BIFURCATION ANALYSIS OF PDEs

via, using the method of bifurcation theory; the paramées
N used as the bifurcation parameter. The following assumgtio
1 ACQ are imposed on the model, and on any solutigmh)
NVAxB):=—% 1 t) e A 6(t) e B}, ’ . . ) ’
N(AXB) = i; {a®) (DEB) e [0,211.  considered in our analysis:



(Al) The densityg is uniform onQ:=[1—y,1+]. whereZ(0,A,w) = (H(6,A,w),P(6,A,w)). Key to analysis
(A2) The functionsp, h are periodic ind: is the Fourier series expansion with respectfo

— —+o00 . ~+o00 .
h(evtaw) - h(9+27T,t,(L)), H= Z Hk(w)elke, P= Z H((w)elke’ (24)
p(0;t,w) = p(8 +2mt, w), 6 €[0,2m,t >0, we Q. o o

We single out one solution obtained in SecD: The where dependence oh is suppressed for notational ease.
incoherence solution. We denote this solutionZyyf) := The two normalization conditions giveh(w) = Ho(w) = 0.
(ho(0),po(0))". The existence of a hifurcating solution LetC denote the Laplace transform ofsee 23)). Using
branch is investigated via analysis of a linearization @abodhe Fourier series expansion
Zo. The spectral analysis of the linearization is used to aobtai _ T oy
the bifurcation point as a critical value &= R.(y). Co)=-3 (Z e'ke/ R(w)g(w)dw.  (25)

To verify the conclusions of bifurcation analysis, the k={1,-1} o
solution of the PDE is obtained numerically by using anysing (24) - (25) yields a diagonal decomposition of the
algorithm presented in AppendixIl-B. Numerical results |inear operator
described in SecV show that the incoherent solution is a = @fék)’
limiting fixed-point of the algorithm wherR > R;. Below K
the critical value ofR, the incoherent solution is no longer
'stable.” The numerical algorithm yields a periodic tramgl where each#y” acts on the paifHy, R)". The individual
wave solution that is interpreted as the synchrony solutionoperators have the explicit form

For both types of solutions, the cost functiois periodic o2 o

in time and®: For some value of > 0, 2= <T _1“)' 1 fgzog(‘*’) dw)
SO+2mt+1)=¢0,t), OeR,t>0. 2 z ¢
We find thatt = 2 in the numerical experiments consid- ¢z -— (%Zkz = Koi 0 ) K> 2
; ) . . R k.= K2 ag21,2 . ] — &
ered below, which under (Al) coincides with the mean value “ R — 5k —kowi
of w overQ. K =
and % 7 = LWk,

A. Linear analysis The spectrum of#k is given by the union of spectrum of

The linearization of the equations?) - (16) is taken about £, k=+1,42,.... In general, the spectrum include both

the equilibrium incoherence solutiag = (ho, po). A pertur- continuous and discrete parts. The continuous spectrum of
bation of this solution is denotezy + Z = (ho, po) + (h, p). Zék) correspond to point& in the spectrum such that,

Since p= pp + p is a probability density, the perturbation (i) The operatori| _ W g injective

satisfies the normalization conditigg™ p(0;t,w)d@ =0 for .. Th ¢ Rtox\l CR ,d iL2(0

anyt,w. Since the relative value function is only defined to(”) € range ot opera R IS dense in(Q).

a constant, we also impose a similar normalization comlitiom 0" Packground see [12]. _ _ _
for h: _foznﬁ(e,t,oo)de =0 for anyt, w. In AppendixVII-A we establish the following characteri-

WhenZis small, its evolution is approximated by the linearZ&tion of the spectrum:
equation, Theorem 4.1:For the linear operatorzg : L2([0,271] x
9 501 et Q) — L*([0,2m] x Q),
EZ( b w) = ZR2(6.t, @), (i) The continuous spectrum equals the union of sets
where {sM1p . where

b g2 2
LrH(0,t, w) == ( ;“faghfg;fagggz @ sh:={rec|r= i%kz—kwi for all we 0}.
—WogP+ 77r0eN+ 5 0o P
(i) The discrete spectrum coincides with the discrete spec
trum of Zék) for k=+£1.

1/ f2m . (6—19) -
= sir [ —— ) B(9;t, w)g(w) dS dw 23 u
2./9./0 2 A )9(®) (@3) The points inS¥ are in one-one correspondence with

On taking the Laplace transform d1%) we can obtain the the frequencies in tzhe distributiog(w). That is, for each
representatiorZ = [IA — %] ~1%(0), whenever the inverse &b € Q, the point+%k? —kapi € S¥ lies in the continuous
exists. We say thad € C is in the spectrum of%g if spectrum. On the complex plan&® comprises of two
the inverse[l A —JR]*l does not exist as a bounded lineadine segments, one in the left half-plane and the other in
operator orL?([0, 2] x Q). the right half-plane. The main thing to note is that the

The associated eigenvector problem is given by, continuous spectrum does not change with the valu® of

and is moreover bounded away from the imaginary axis

AZ=2RZ, for k= +1,42,---. So, the focus of the analysis and the

andc(f,t) =



numerical study that follows is on the discrete spectrum for The linear analysis suggests appearance of the synchrony

k=+1. solution via the Hamiltonian Hopf bifurcation &= R; [4].
Fork=1, let(H1,P1)" denote the eigenvector correspondA rigorous justification for existence will require nonlare

ing to an eigenvalug. We assuma ¢ S, the set contained analysis that is not presented here. Instead, we present

in continuous spectrum. We have:

2

AHi(w) = (% - wi) Ha () + 7?}/9 Py (w)g(w) dw, (26)

numerical results on these two types of solution obtained
for values ofR greater than and less than the critical value
Re.

In the remainder of this section we restrict yo= 0.05,

AP () = —iHl(w) — <U_2 + wi) Py (). (27) Which givesRe(y) =39.1. The computation; that foIIov_v are.
2nR 2 based on the waveform relaxation algorithm described in
We formally obtain from 27), AppendixVII-B .
1 Ha () In numerical experiments the uniform distributigfw) =
Pw)=—F%2—F"— (2y)~! on the intervalQ = [1—y,1+y] is approximated
2TRA + T+ w by a uniform distribution on three discrete frequendigs-
and on substituting this inta26), y,1,1+y}. The value ofy =0.05 is sufficiently small so that
1 © Hi(w) the numerical results are very similar to those obtainedgusi
Hi(w) =— 5 . / > -g(w) dw. a finer discretization of2. The PDEs are discretized along
8RA — F +wi) /A A + G + wi the 8 coordinate using the method of Fourier collocation [2]
(28)  with 64 collocation points in the intervad, 271.

The solutionHy,P; € L?(Q) becauseA ¢ SY, ie., A +
02/2+ wi # 0 for all values of w € Q. Denote b :=
Jo Lz“’)g(w) dw which is a constant independent @t

B. Average cost bifurcation diagram
Fig. 3 depicts a numerically obtained bifurcation diagram

A+ G+t 1 for the average cosy(w) as a function of the bifurcation
This givesHi(w) = —b(8R(A — 302+ wi)) . Substituting parameteiR.
this into 28) yields the characteristic equation far
1 w nw) | w=095
—/ - 9(®) ——do+1=0.  (29) e B
8RJa (A = Z + wi)(A + & + wi) - - w=105
For k= —1, the eigenvalue is complex conjugate o2
V. NUMERICAL RESULTS 0.15
We present here results from computational experiments 0.1 ] R-1/2
0.1 0.15 0.2 0.25 0.3 0.35

based on the coupled equatioig)(- (16).
We fix g2/2 = 0.05 throughout, and the cost parame®er

Fig. 3.
is treated as a variable in the bifurcation analyses théiviol 9

Bifurcation diagram: the average cost as a functibt/&/R.
A. Eigenvalue as a function of R For R> R. = 39.1, the average cost was found to be
o _ 1 . . . . .

The characteristic equatiore) was solved numerically (@) = Mo = 3, which is consistent with the incoherence
to obtain a path of eigenvalues as a functiorRof solution of Secll-D. ForR < R; the average cost is reduced,
Fig. 2 (a) depicts a locus of eigenvalues obtained for &nd for suchR the value ofn(w) < no depends upon the
family of models parameterized 1%, y is fixed at 005. For frequency_w. I_ts minimal value is attained uniquely when

R ~ oo there are a pair of complex eigenvaluesj:'aﬁ’z—2 —i W= 1, which is the mean frequency undgr

(for k=1). As the parametdR decreases, these eigenvalue
move continuously towards the imaginary axis. The critica _ ] -
value R; is defined as the value d® at which these two _The relative value functioh(8,t, w) and probability den-
eigenvalue paths collide on the imaginary axis, resultmg iSity P(6;t,w) were computed for a range of valuesRif
an eigenvalue pair of multiplicity 2. The eigenvalues sat

R is decreased further, and remain on the imaginary axis for
R < Re. The real and the imaginary part of the two eigenvalue

. Value functions, control, and density evolution

7 no,1,0)

paths originating att%z —i are depicted in Fig2 (b). This 2 '\' Value functions

eigenvalues also have their complex conjugate countarpart o .

(for k= —1) that are not depicted for the sake of clarity. 0 [Zme=1es
In (a) and (b) the value oy is fixed at 005. The critical . ~ ________ popuiton

valueR; is a function of the parametet Fig. 2 (c) depicts o Density

71' 2w

a plot of Re(y) as a function ofy. In the (Ryy) plane,

this defines a boundary separating potentially two kinds afig. 4. Relative value function foR= 10, and the population density
behavior — incoherence and synchrony. for a particular value of.
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Fig. 2. Spectrum as a function & (a) The continuous spectrum flar=1 and 2, along with the two eigenvalue pathsRadecreases. (b) The real and
imaginary parts of the two eigenvalue pathsRadecreases. (dR:(y) as a function ofy.

The incoherence solutiom = 0 was obtained foR > 60; VI. CONCLUSIONS
the algorithm was very slow to converge Rsvas reduced
to values neaR..

Fig. 4 depicts the relative value function as a function o

This paper aggregates concepts and techniques from non-
inear dynamical systems, game theory, and statistical me-
hanics to provide new tools for understanding complex

4 I(E)btam_ed forR = 10| <d Rﬁ anr:j forl a partlclula:c valu_e of interconnected systems, and new bridges with prior rekearc
t. Experiments revealed that the relative value function ang, . key messages are,

the solution to the FPK equation arise as a traveling wave

solution. In particular, the solutiop has the form (1) Distributed control laws are tractable for a class oftar
' ’ ’ population dynamic games with separable cost structures.
p(6;t,w) = p(@ —at;0,1), h(6,t,w)=nh(6—at,0,w) This conclusion is based on an approximation of the

complex stochastic system using a deterministic PDE
Moreover, the wave speed was equakte: 1, independent model, similar to the mean-field approximation that is
of w, which coincides with the mean frequency with respect central to the study of interacting particle systems.

to the densityg. (i) The rich theory surrounding the classical Kuramoto
model can be extended to the dynamic game setting intro-
06 Al ropuiction duced here to explain phase transitions in these systems. In
04 S Density particular, methods from bifurcation theory can be adopted

to analyze multiple equilibria and their stability propest

Control laws
"""" ©=0.95

o The proposed methods are expected to be relevant to
T e=ios applications involving large population of controlled éet-
geneous nonlinear systems.

0 ™ 2r 0

VII. APPENDIX
Fig. 5. Comparison of the control obtained from solvii@)(- (16) and

the Kuramoto model. A. Proof of theoremt.1
Recall the control law 19) is u*(t) = —%09h*(6,t,w), _ We provide a prqof only fotk| > 2. The proof fork: +1
is conceptually similar but some of the calculations areemor

which depends upon the frequency. The control laws
obtained for a fixed and several values ab are depicted
in Fig. 5 in relation to the population density. Note that

complex.
We consider the equation

the control is zero wherw = 1, and 8 lies at its mean H(w) ()
L . Al _g(k)) _

value (equal torr in this figure, for the particular value of ( R Plw)) ~ \Z(w)

chosen).

2 .. . -
The control law that gives rise to the Kuramoto oscillatowhereu(w)’ {(w) € L5(Q). Explicitly, this gives

is defined byu™"" (8,t) = £ 5 1sin(6j(t) — 6). Given the a2, ,

previous numerical results using = 10, it is reasonable (A _7k +kwi)H(w) = v(w),

to conjecture that a®N tends to infinity this can be ap- o2, _ 1

proximated byu " (6,,t) = kosin(9o +t — ), for a phase (A+ 7" + ki )P(w) = —ﬁH(w) +{(w).

variable 39 and a gainkg that is proportional tok. This

is because in the synchrony state, the individual oscitato
rotate with a common frequency 1. That &(t) ~t+do | 1

for somedg j € [0,2m]. Without noise, such a solution is in (w) = A — K2 4+ koo viw
fact exact for the Kuramoto oscillators. Fi§.shows that 2 1 1
the optimal control law is in fact “close” ta*"” when ko, P(w) ———Hw)+(w)|. (31

P e a—
t, anddp are chosen appropriately. A+ Gk kel [ 2R

Formally the inverse, if it exists, is given by

(30)



The proof thatZng) is 1-1 for allA € C is now straight- The system is solved by using a method based on wave-
forward. If u(w) = 0 thenH (w) = 0 in L?(Q) using B0) and  form relaxation — the algorithm is illustrated in Fig. It is
if additionally { (w) = 0 thenP(w) = 0 in L?(Q) using @1). initialized with some initial guess for the densipy(8,t)
Using the formula for the inverse, the inverse operator isver the time horizon0,T]. The following sequence of
bounded if and only ifA ¢ S If A = Ag= %Zkz_ kapi € computations are performed in th® iteration,
SK for somewy € Q, thenAg— %2k2+kwi =0forw=ap (i) Use pk(6,t) to evaluate the(8,t) using 36). Denote
and the invers¢Ao— ""72k2+kooi)71 in (30) is not bounded. it asc(6.t).

The converse also follows similarly. (i) With c¢(6,t), simulate the causal representati@d)(to
. . T
Finally, the range ofigl —.2® is dense ir_2(Q) because ~ Obtain the solutionVj and henceh”.
consider for example, the space@¥ffunctions withu (ap) = (i) The optimal control law isuy(6,t) = —éaghf:)(e,t).
V'(awp) =0. B (iv) Use the control lawu(6,t) to obtain the new density

Pk+1(8,t) from the solution of the FPK equatioB%).

This is then repeated witk replaced byk+ 1.
In this section, we present a numerical algorithm to obtain
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Fig. 6. Information flow of the numerical algorithm.



	Introduction
	Oblivious Equilibria
	Finite oscillator model
	Optimal control of a single oscillator
	PDE model
	Incoherence

	-Nash equilibrium
	Infinite population limit
	Comparison of Nash and oblivious control laws

	Bifurcation analysis of PDEs
	Linear analysis

	Numerical results
	Eigenvalue as a function of R
	Average cost bifurcation diagram
	Value functions, control, and density evolution

	Conclusions
	Appendix
	Proof of theorem 4.1
	Algorithm to solve coupled PDEs

	References

