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Abstract. This article reviews some recent results by the author on the optimal
control of Markov chains. Two common algorithms for the construction of
optimal policies are considered: value iteration and policy iteration.

In either case, it is found that the following hold when the algorithm is
properly initialized:

(i) A stochastic Lyapunov function exists for each intermediate policy, and
hence each policy is regular (a strong stability condition).
(ii) Intermediate costs converge to the optimal cost.
(iii) Any limiting policy is average cost optimal.

The network scheduling problem is considered in some detail as both an
illustration of the theory, and because of the strong conclusions which can be
reached for this important example as an application of the general theory.
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optimal control; dynamic programming.

1. Introduction

1.1 Feedback

The subject of this article concerns the synthesis of feedback laws for controlled, noisy,
nonlinear systems. For any sort of controlled system, such as an automobile steered by a
human driver, or the cruise control system on the same vehicle, some sort of feedback will
certainly play a prominent role. In this automotive example, the most significant example
of feedback involves the driver’s eyes which hopefully are following the road. The car’s
cruise control uses speed measurements to attempt to regulate the actual speed of the
vehicle. Even in a modern oven there is a thermosensor which sends measurements to a
device whose job is to regulate the temperature to ensure a well-baked cake.

In a control system as simple as the cruise control, one must still be careful in the way
that measurements are used in the adjustment of the gas flow to the engine to maintain a
constant speed. In aerospace applications such control design requires even greater thought.
The design of effective ‘‘feedback laws” to utilize available measurements is the subject of
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automatic control; an active field in the mathematics and engineering communities for over |

fifty years.

The control systems considered in this paper may be modelled by the nonlinear state

space model

®(t + 1) = F(®(t),a(t),I(t+ 1)), >0, (l)i‘

where time is discrete. The sequence ® := {®(¢) : t > 0} denotes a state process for the |
system to be controlled, and a := {a(t) : t > 0} is called the control sequence, or action |
sequence, or the policy. We assume that controllers are not clairvoyant so that, for any 7, the
action a(t) depends only upon the variable ®(s) for s < t. The state process takes values in |

a state space X, and the control sequence takes values in an action space, denoted A.
In the example of an automobile and driver the variable ®(¢) will denote the position,
velocity etc. for the car to be controlled. The actions a(¢) which the driver implements will
of course depend upon these variables. The function F describes the dynamics of the
system, and the sequence {I(z) : + > 0} represents noise which is beyond the control of the
driver, such as gusts of wind or oil on the road. If this noise is modelled as in i.i.d. sequence
(the noise variables {I(r) : t > 0} are independent, with identical distributions), then the
model (1) is known as a controlled Markov chain, or Markov decision process (MDP).
The motivation for considering such systems is largely two-fold. First of all, almost any
man-made or natural system can be at least approximately modelled by a MDP. Moreover,
once one has decided on such a model, there is the hope that simple and efféctive feedback

laws may be computed. We are particularly interested in finding a useful action sequence of

the stationary feedback form where a(r) = w(®(t)): the feedback law w is a static function
from the set of states X to the set of actions .4

We are interested in control problems of the ‘process control’ type (such as the cruise
control, or the oven). A more relevant example may be found in the area of manufacturing,
where today one finds assembly production lines of high complexity. There may be many
process-control problems within plants in a facility. However, because it is such an
interesting example and because the specialization of the results described here are so
striking in this context, in this paper we will consider in some detail the ‘meta’ control
problem of scheduling parts in the system to minimize inventory, and minimize production
delay. The control goal is one of regulation, and such a control problem may be
conveniently modelled as an MDP.

To show that this scheduling problem fits into our framework, consider a network of
the form illustrated in figure 1, composed of d single-server machines, indexed by
o =1,...,d. The network is populated by K classes of “customers” (which may in fact be
partially assembled parts). After completion of service at a machine, the customer changes
class and enters a machine, or leaves the network. It is assumed that there is an exogenous
stream of customers of class 1 which arrive to machine s(1). A customer of class k waits in
buffer K, until it receives service at machine s(k). If the service times and interarrival times
are assumed to be exponentially distributed, then after a suitable time-scaling and sampling
of the process, the dynamics of the network can be described by the random linear system,

(r+1) = (1) +i[k(t+ D[ — e lw (B(1)), (2)
k=0

Ed
where the state process ® evolves on the state space X := ZX. The vector X € R is the kth
basis vector, e* = (0,...,0,1,0,...,0).
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Figure 1. A multiclass network with d =2 and k = 3.

The value of ®;(¢) is the number of class i customers in the system at time ¢ which await
service in buffer i at machine s(i). The function w: X — A :={0, 114+ is the feedback law
to be designed. If w;(®(¢))I;(¢ + 1) = 1, this means that at the discrete time ¢, a customer of
class i is just completing a service, and is moving on to buffer i +1 or, if i = K, the
customer then leaves the system.

The set of admissible control actions that a(f) may take on at time  depends on the value
x of the system at time 7. This set, denoted A(x), is defined as follows where we write a as a
column vector, a = (do, .. ., ;) € A(x) {0+ 1,

(i) ap=1,and forany 1 <i < K,a;=0o0rL:
(ii) Forany 1 <i<K,x; =0=a;=0;
(iii) For any machine 0,0 < 3 oo ® < 15

(iv) For any machine o, ;;-, @ = 1 Whenever o, D istiy=o Xi > 0.

Condition (iv) is the non-idling property that a server will always work if there is work to
be done.

To regulate this system it is convenient to impose a cost function. Here a natural “‘cost”
is ¢(®(1)) = |@(¢)| = 3 ®;(¢), which is the total customer population at time 7. We use | - |
here to denote the £; norm. If this cost criterion can be minimized in some sense, then the
system will be well-regulated as desired. The non-idling condition (iv) may then be
assumed without any loss of generality since any optimal policy will be non-idling with
this cost function.

Suppose that the random variables {/(z): ¢ > 0} are i.i.d. on {0,1}**!. We assume that
P{3".1;(t) = 1}, and we define E[[;(t)]= p;. For1 < i < K, 11; is interpreted as the service
rate for class i customers, and for i = 0 we let po:= A, which is interpreted as the arrival
rate of customers class 1. It is clear then that the model (2) is an MDP of the form (1). The
general results of this paper will be applied to this specific example in § 6.

1.2 The optimality equations

The MDP model can be equivalently defined through its transition probabilities. Consider
the case where the state space X and the action space A are both countably infinite. The
controlled transition probability P, is then defined via
Pu(x,y) =Prob {®(t + 1) = y|®(r) =x, a(t) = a}
= Prob {F(x,a,I) =y}, xye€XacAt20,

where I is a generic noise variable. We consider the constrained control problem where for
each x there is a set .A(x) C A such that a(f) € A(x) whenever ®(t)=x.
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Our attention is primarily restricted to Markov policies where the action a(t) only
depends upon &(¢). This means that there exists a sequence of feedback laws {w':t >0}

with a(z) = w'(®(t)) for each 1; a generalization of the stationary case where w' = w0 for

all 1.
We evaluate a policy based upon the average cost criterion:

J(x,a) = limsup ’_11_ Ex [n‘:l c(®(t),a(r)) |, (3)

n—00 =0

H
H
i

!

i

where the initial condition ®(0) = x is given. The quantity c(®(2),a(r)) represents the cost
paid at time #; the one-step cost ¢ is a function from X x A to [1,00). An optimal policy is |
one that minimizes (3) for any initial condition. It is hoped that an optimal policy does

exist, and that it can be taken in the simpler stationary form.

The motivation for considering this average cost control problem is that there is good *
reason to believe that the optimal solution will take on the relatively simple stationary

form. Moreover, it is a natural criterion in settings such as process control, where controll-
ing transients is not so important as achieving good performace in the steady state.

The construction of an optimal policy typically involves the solution to the following

pair of equations

e hel@) = min [c(x,0) + Puh, (1)) “
w*(x) = argmin [c(x,a) + P,h.(x)], x€ X. (5)
acA(x)

In these equations the transition function P, is viewed as an infinite-dimensional matrix,
and h, as a compatible column vector. Hence P,h, may be viewed as a column vector

whose xth entry is

Pohu(x) 1= " Po(x,y)ha(y).

yeX

The equality (4) is known as the average cost optimality equation (ACOE). The function &,
is known as a relative value function. The second equation (5) defines a stationary policy
w*. If a solution can be found, then typically the stationary policy w* is optimal (see e.g.
Arapostathis et al 1993; Borkar 1991; Meyn 1997; Puterman 1994).

The questions addressed in this paper all revolve around these two equations. Is there a
solution? If so, how can it be computed? If an algorithm is found, is its convergence
guaranteed? How fast? Are the intermediate feedback laws generated by the algorithm
useful? The last question is important since we cannot wait forever for whatever algorithm
we implement to converge.

There are two popular algorithms to attempt to solve (4). The first is the standard
dynamical programming approach known as value iteration (VIA). The second is called
policy iteration (PIA). The idea is this: The equation (4) is a fixed point equation of the
form £(h) = h, where A is a function on X, and g = L(h) is the function defined by

g(x) = agﬁg){dx, @) = 1 + Pyh(x)}.

The VIA is then (essentially) the process of successive substitution: given one approximate
solution f, we compute another, perhaps better approximation via hyy; = L(hy)

e ‘_m_.‘...

i
H
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Although it is frequently convergent, at least locally, the successive approximation
method is known to be slow in general since the “slope” of the function & — L(h) — h
may be small in a neighbourhood of A.. The standard approach to speeding the conver-
gence of the successive approximation approach is to use derivative information to adjust
this undesirable slope — this leads to the Newton-Raphson method, to which the PIA is
closely related (Cao 1998; Whittle 1996).

The remainder of this paper is organized as follows. The VIA and PIA are defined
formally and their properties are explored in §4 and 5. Sections 2 and 3 below provide
some basic ergodic theory and optimization theory which form a foundation for the
remainder of the paper. In the final section of the paper we present applications to the
network scheduling problem.

2. A steady state cost?

Since the goal is to find a policy which minimizes the steady state cost given in (3) it is
reasonable to first try to understand when the cost J(x, a) can be expected to be finite, and
how we can characterize the limit.

We consider in this section the stationary case where a is a Markov policy defined by the
feedback law w so that a(t)= w(®(¢)),t € Z,. We denote by P the transition kernel
P(x,y)= P, (x,y) and similarly drop the dependence of ¢(x, a) upon the control since the
function w is fixed throughout. Hence is this section we let ¢ denote a function on X with
c> 1.

Although we are taking the very special case of countable state space chains, whenever
possible we state definitions and results so that extensions to the general state space
framework will at least seem plausible. The reader is referred to (Meyn & Tweedie 1992)
for an analogous treatment of Markov chains on a general state space.

We assume that the Markov chain ® with transition law P is 1-irreducible, as defined
by (Meyn & Tweedie 1992). For a countable state space model this means that there
is a single communicating class which is reachable, with positive probability, from any initial
condition. Equivalently, there exists a state § € X which is accessible in the sense that

iP'(x, 6) = i P{®(t) = 0|®2(0) =x}>0, xeX

t=0 t=0

Throughout the paper we use 6 to denote some fixed state which is accessible in this sense.
We also assume thoughout that ® is aperiodic, which is equivalent to the requirement that
the accessible state 0 satisfies P"(6,6) > 0, for all n sufficiently large.

2.1 Regularity, Lyapunov functions, and ergodicity

For this uncontrolled Markov chain the existence of a limit in (3) is guaranteed if the chain
is c-regular — a form of stability. For the countable state space chains considered here the
definition is simply stated: ® is c-regular if for some 6 € X and every x € X,

E. r‘jc(@(t))} < 00,

t=0
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where the first return time to the point @ is defined as
Ty =min(t > 1: ®(¢) = ),

- set to co if the minimum is over an empty set.
A c-regular chain always possesses a unique invariant probability 7 such that

TP(x) == Y " w(y)P(y,x) = m(x), xeX;

yeX

m(c) := Zc(x)Tr(x) < 0.

xeX

For c-regular chains we can solve equations of the form
Ph=h—c+q

for the unknown function & with 7 = m(c). This is obviously closely connected to the ;
solution of the average cost optimality equation.

A stochastic Lyapunov Junction in the context here is a function V : X — R, satisfying
the drift inequality ¢

EV(2(t+ D)F] < V®()) - e(3(1) + 5(3(2)) (6

where F; = o(®(r) : r < 1), and s is bounded, positive function. When the one step cost
c(®(2)) is large, then (6) tells us that we expect the value of V(®(r+1)) to be
correspondingly smaller than V(®(r)). Hence there is a negative “drift” towards the center
of the state space where the cost is relatively low. The inequality (6) is closely related to
both Foster’s criterion for stability, and an approach known as Lyapunov’s second method,
Hence (6) is called a Foster-Lyapunov drift inequality. By the Markov property it may be
equivalently expressed algebraically as PV < V — ¢ + .

The connections between Lyapunov functions and c-regularity are largely based upon the

following general result, which is a consequence of the Comparison Theorem of (Meyn &
Tweedie 1992).

Theorem 1. (Comparison theorem). Let ® be a Markov chain on X satisfying the drift Eﬂ
inequality !
PV<V—c+s. (7)

The functions V¢ and s take values in R,.
Then for any stopping time T

EV(®(1)] + E, [i c(@(t)):! <V +E, [Tz_ls(@(t))} : (8)
t=0 =0

1

The comparison theorem provides the bound that is required in the definition of c-

regularity provided that the RHS of (8) is finite valued. This of course will depend upon the
function s. Define the resolvent as the. weighted sum

- .
K= Zz‘““)P".
i=0
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A function s : X — [0,1] is called
petite: if there is § € X such that
K(x,0) > s(x), xeX (9)

special: if

sup E, ri s(@(t))-J < 00.

xeX 1=0

In the definition of a special function we do not require that the return time 7y be finite-
valued.

If S C X, and 61y is petite (special) for some § > 0, then the set is called petite (special).
A geometric trials argument shows that petite sets are always special (Meyn & Tweedie
1992; Nummelin 1984). If the chain is irreducible in the usual sense then obviously every
finite set is petite.

If the function s used in Theorem 1 is special then the RHS of (8) will be bounded by
V (x) plus a constant, which implies that the chain is c-regular. This observation and renewal
theory arguments lead to the following version of the f-Norm Ergodic Theorem of (Meyn
& Tweedie 1992).

Theorem 2. Suppose that ® is a Markov chain on X satisfying the Foster-Lyapunov drift
inequality
PVL<V—-c+T7

where T > 0 is a constant; the function c takes values in [1,00), and the function V takes
values in R,. Suppose moreover that the set S = {x: c(x) <27} is petite.
Then

(i) ® is a c-regular Markov chain satisfying the bound, for some by < o0,
Ty—1
= [Z c((I)(r))} <V(x)+ by, x€X; '
=0

(ii) There is a unique invariant probability 7, and 7(c) <7
(iii) The “mean cost” converges for any x:

E:lc(®())] — 7(c) t— oo.

2.2 Poisson’s equation

Suppose that ® is a c-regular Markov chain with invariant probability m, and denote -
n = n(c). The Poisson equation is defined as

Ph=h—c+mn, (10)

where i : X — R. The computation of 4 in the finite state space case involves a simple

matrix inversion which can be generalized to the present setting provided that the chain is
c- regular.
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"Given a function s: X — [0,1], and a probability v on X, the kernel s® v: Xx
X —1[0,1] is defined as the product s ® v(x.y) = s(x)v(y), x,y € X. Letting v denote the
point-mass at 6, the minorization condition (9) may be expressed K > s ® v. Suppose that
the Poisson equation has a solution . Then we have the equivalent formula,

Kh = h — K&,

where Z(x) = c(x) — m(c). Since any translation h-+const. is also a solution, we may
assume that v(h) = 0. We then have (K — s ® v)h = h — KT, or
(I-(K—s®uv))h=Ke.

The inverse of the infinite matrix on the LHS is given by the infinite sum
00
(I-(K-s®u)” -——Z(K—-s@v)‘.
i=0

Thus we may expect that the solution to Poisson’s equation will be expressed by the
formula

o)

h(x) = Z(K —5® v)'Ke(x), xé€X, (11)
i=0

provided the sum is absolutely convergent. This is indeed the case for c-regular chains
(Glynn & Meyn 1996; Meyn 1997).

The advantage of this construction is that it can be applied to Markov chains on a general
state space, and may even be extended to continuous time processes, where the kernel K
must be replaced with the continuous time version of the resolvent. When X is countable
and 0 € X is accessible, then a much more transparent construction is

Tg—l

h<x>=Ex[Z(c<@<r>>-m} reX, (12)

t=0

Evidently, for a c-regular chain the function 4 is finite-valued.

The papers (Glynn & Meyn 1996; Meyn 1997) use these ideas to establish a sufficient
condition for the existence of suitably bounded solutions to Poisson’s equation for general
state space chains. Theorem 3 specializes this result to the countable state space setting.

Theorem 3. Suppose that the Markov chain ® is c-regular, and let
91
V(x) = E, {Z c(@(r))} :
t=0
Assume that with n = (c) the set S defined below is petite
§ = {x: Ke(x) < m(c)}.

Then the function 4 given in (12) is a solution to Poisson’s equation (10), and has the
following properties:

(i) The function is bounded from above:

h(x) <V(x) xeX

>

%.
!\
g,
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(ii) It is bounded from below:

inf A(x) > —oo.

xeX

(iii) It is essentially unique: If g is any finite-valued function which is bounded from below
and satisfies

Pg=g—c+n,
then g(x)— g(6) = h(x) — h(6) for almost every x € X[x], and g(x) — g(6) > h(x)—
h(6) for every x € X. O

The following result is then easily proven since Poisson’s equation is a very special case
of the drift inequality used in Theorem 2.

Theorem 4. Suppose that c¢ is unbounded off of petite sets. That is, the sublevel set
Sy = {x : c(x) < n} is petite for any n > 0.
Then the following are equivalent:

(1) Markov chain ® is c-regular;
(ii) There exists a finite-valued function V : X — Ry and a constant j < oo satisfying

PV LSV —c+T
(iii) There exists a positive and finite-valued solution h to Poisson’s equation. O

We note that if (ii) holds then the solution 4 of Poisson’s equation can be chosen so that
for some constant by,

0<h(x) <V(x)+by, xeX

This follows from theorem 2.

3. Existence of optimal policies

We now return to the case of a controlled chain with transition function P,. If a stationary
policy defined by a feedback law w is used then the controlled chain has stationary
transition probabilities, to be denoted P,,, so that

Pw(x7y> = Pw(x)(xay)7 x,y € X.
Similarly, we write the resulting one-step cost as ¢,, so that
cw(x) = c(x,w(x)), xeX

A feedback law w is called regular if the Markov chain with transition law P,, is ¢,-regular,
as defined in the previous section. In this case the chain possesses a unique invariant
probability, to be denoted m,,, and m,(c,) < co.

3.1 The minimal relative value function

With a better understanding of Poisson’s equation in the control-free case we may now
formulate existence criteria for the closely related ACOE (4). To begin we define the
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following ““‘cost over one cycle” 7, for a Markov policy w:

Tg-—l

> (e(@(), w'(2(1))) - n)} < 0}. (13)

My = min{n >1:Ey
) t=0

The minimal cyclic cost over all Markov policies will be denoted 7,:
N = inf {n,, : w is Markov}. (14)

When w is a regular feedback law then the resulting stationary policy w satisfies
Nw = Tw(cw) =J(x,w),x € X.
The minimal relative value function h, is defined pointwise as

ha(x) = inf E [fi(c@(r),w’@(t») - m)} , (15)

t=0

where the minimum is over all Markov policies w.

This definition is a generalization of the construction of a solution to Poisson’s equation
given in the control-free case. To obtain the desired bounds on 4, (we hope that it is finite-
valued, and uniformly bounded from below) the following assumptions will be imposed.

(A1): There exists a feedback law w™!, a function Vy : X— Ry, and 7j< oo satisfying
PaVo < Vy—cp1t +7.

(A2): For each fixed x € X, the set A(x) is finite.
For each n > 0 the following sublevel set is finite:

Sy = : mi ,a)<np.

n {x agljg)c(x a) < 77}

(A3): There is a fixed state 6 € X such that for any Markov policy w,
K,(x,0) >0, xeX.

The assumption (A1) means simply that there is at least one regular policy. Condition (A2)
asks that large states receive a large penalty through the cost function c. Condition (A3) is a
generalization of the petite set condition imposed in the previous section. Using Fatou’s lemma
one may show that this implies the (apparently) stronger set of conditions which show that the
sublevel sets are “uniformly petite” and “uniformly special” over all Markov policies.

PROPOSITION 1
Suppose that (A1)—(A3). Then

() For some function s: X — (0,1) the following bound holds for all x € X and all
Markov policies w:

Ky(x,0) > s(x);

(ii) For some non-decreasing function B : Ry — R, and any Markov policy w,
T9—1
sup EY {}: Is, (‘P(f))J < B(n), (16)
x€X =0

where S, is defined in assumption (A2).

)
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Proof. (i) Suppose not. Then there exists some xy such that inf, K, (xo,0) = 0, and hence
there is a sequence of Markov policies w" for which K, (x0, 8) < 1/n. Assume without loss
of generality that w" — w™ pointwise as n — co. By Fatou’s lemma we then have

Koy (x0,0) < liminf Ky (xo,0) = 0
n—00

?

which contradicts (A3), establishing (i).
(ii) Fix n > 0 so that S, is non-empty and find § > 0 such- that K, (x,0) > 6 for x € S,,
and any Markov policy w. We then have for any such w,

T =1
EY [Zﬂs" :| < 6! EY Z Wi (P :l
=0
where wl! is the shifted policy

wil = (w', Wt L).

From the Markov property we can replace the resolvent by a sum over a sample path as
follows

T9—1
EW Z w[‘] :I
t=0
(19—1 / oo
<EY Z(Z 27 (Bt + k) = 9))}
Lt=0 \ k=0
T9—1 00
)
L t=0 \k=mp~t
Tp—1
e ffre)
t=0

3.2 Properties

From the uniform bound (16) we then obtain uniform bounds on the minimal relative value
function:

PROPOSITION 2
Under (A1)~(A3) we have h,(0) =0, and for some by < 0o

—by < h*(x) < Vo(x) + by, xeX
Proof. That h,(6) = 0 follows from the minimality of 7, and the definition of A..

The lower bound follows from proposition 1 which implies the explicit bound &, (x) >
—n+B(n«),x € X. The upper bound is a consequence of minimality of ,:
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ho(x) < EY [ﬁf c(@(t),w’((b(t)))} < Vo(x) + const.
=0

D - ’f@ %

For any Markov policy w®= (w3, w?,...) we can derive the following dynamic
programming inequality using the fact that £, (§) = 0:

min {c(x, a) — n, + P,h.(x)}

acAlx) *
< (6 wo®) =1 + Y Py (4, )hu(y)
y#0
91 ]
= c(rwo(@) —ns + ) Pool, y){mjn EY | D (e(@@),w'(2(1)) - m)J }
y#0 =0
Tp—1 T
<clewg(x) —m+ Y Py <x,y>{ S {Dc(@m, W (8(2))) = m.) } A
y#0 = -

0
where in the last inequality we denote w®l!l = (w9, w9, ... .). From the Markoy property we
see that

k 7'()—]
min {c(x,) ~ .+ Paho (1)} < EV [}j«:(@(r), W)(®(1)) - m)J .
a =0
We can minimize over all Markov policies since w® was arbitrary to obtain the inequality:

min {c(x,a) — 0, + Poh(x)} < h(x), x€ X.
acA(x)

Suppose that w* is a minimizing feedback law:

w (3) + Purha(x) = min {c(x,0) + Puh.(x)} any

We see then that the Poisson inequality holds
Cw*()C) +PW*]’L*(X) S_ Nx +h* (18)

It follows that w* is regular, and from the comparison theorem we have the bound
T (Cor ) = T < s By minimality of 7, the equality 7,-= 7, must hold, and by
minimality of h, and uniqueness of solutions to Poisson’s equation the inequality (18) must
also be an equality. We summarize these results in the existence theorem.

Theorem 5. Suppose that (A1)—~(A3) hold and that Ny <00. Then

(i) The minimal relative value Junction is a solution to the ACOE.
(ii) Any feedback law w* satisfying (17) is optimal over all Markoy policies. .

(iii) Any feedback law w* satisfying (17) minimizes the “relative cost”: For any Markov
policy w, and any x,

Tp—1

91
h(x) = EY [Z(cw* (1)) - m)} <E [Z(C(@‘(t),W’@(t))) =)
t=0

t=0
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(iv) If (hy,w™) is any other solution to (4) for which inf .h (x) > —oo, then w is regular
with unique invariant probability 7., and

hi(x) = he(6) = hu(x),  if mi(x) > 0;
hy(x) —hi(8) > he(x), forall x.

4. Value iteration

Now that we know that the ACOE has a solution, the next question we consider is, how do
we compute a solution? Recall that the ACOE may be described as a fixed point equation

he = L(hy) = main{c(-,a) — N + Pyhy}.
The first algorithm we shall look at is the value iteration algorithm, or VIA.
4.1 Successive approximation

The VIA approach to solving the ACOE was described in the introduction as being

“somewhat like” the successive approximation approach to solving a fixed point equation.
Suppose that & is given as an initial condition. Assume &g : X — R with inf,ex ho(x) >
—o0. Then the actual successive approximation algorithm defines a sequence of functions
{h, : n > 0} inductively as follows: 1= L(h,), or equivalently,

Fipg1 (x) = ag}m){c(x, a) — n. + Pohy(x)}, xeX,n>0. (19)

For any n the function , has the interpretation

n—1

() = min EY | S (e(®(8), W' (8(1))) — n1) + Fo(@(n) |,

=0

where the minimum is over all Markov policies. Note the similarity between this and the
definition (15), which is one motivation for the algorithm. However the difficulty with (19)
is that one must know a priori the optimal cost 7.

This turns out to be a minor difficulty since the constant 7, plays a minor role in the
recursion (19). On eliminating this constant we arrive at the more easily implemented value
iteration algorithm, which may be described as a two step procedure: Given the value
function V,,,

Step 1. Compute the feedback law w" through the minimization

w"(x) = argmin (¢, + P, V,(x)).
acA(x)

Step 2: Compute the value function V,; via
Vii1 = ¢y + PnV,,

with ¢, = ¢, and P, = Pyn.
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The function Vo > 0 is given as an initial condition. When the initial conditions are
identical, hy = Vj, we then see that V,,(x) — V() = hy(x) — h,(#) for all x and n. Hence
the function A, defined by '

ho(x) == Vy(x) = V,(0), x€X, (20)

is a plausible approximation to the solution of the ACOE when n is large.
The value function V, has the interpretation

n—1

Va(x) = minE; | Y e(®(0), at)) + Vo(®(n)) |, (21)
t=0

where the minimum is over all policies, and is attained with the Markov policy v" whose
first n actions may be expressed

Vi) = W'H(2(0)),. .., w(B(n - 1))).

We shall let w" := (w",w", w",...) denote the stationary policy defined by the nth feedback
law.

42 Stability

The VIA generates a sequence of feedback laws {w" : n > 0} which one expects will in
some way approximate an optimal feedback law when »n becomes large. At the very least
we hope that the feedback laws are regular or exhibit some form of stability. However, one
cannot even expect the controlled chains to be recurrent unless some additional
assumptions are imposed. The following example is taken from (Chen & Meyn 1997).

Consider the network illustrated in figure 2 consisting of four buffers and two machines
fed by separate arrival streams. It is shown by (Rybko & Stolyar 1992) that the last buffer-
first served policy where buffers 2 and 4 receive priority at their respective machines will
make the controlled process ® transient, even under the usual traffic condition that p < 1, if
the cross-machine condition \/uy + A g < 1 is violated.

If the VIA is applied to this model with V, = 0, then one obtains V; (x) =|x

Va(x) = |x| + min(|x| + 2 — pows (x) — pawa ().

, and

The minimizing feedback law w? is given by
wh(x) = 1(xy > 0); wi(x) = 1(xg > 0).

We conclude that J(w?) = co when \/uy + A/ps > 1 since this is precisely the destabi-
lizing policy introduced by (Kumar & Seidman 1990; Rybko & Stolyar 1992). In fact,

k‘qm , o0
“"l B, ‘*’6%%0'..' h, —_—

Machine 1 Machine 2
@1 (1)

—_— Hel{ooowse o Hy luw‘—\
A

Figure 2. A multiclass network with d = 2 and K = 4.
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not only is the average cost infinite, the feedback law w? gives rise to a transient Markoy
chain. O

The difficulty in this example is that the VIA is initialized with Vy = 0, which is not
remotely close to the actual relative value function .. Suppose that instead of zero, the
initial condition Vj is chosen as a Lyapunov function for just one policy. In this case all of
the feedback laws {w"} are guaranteed to be regular. To see this let V; be the function
defined in (Al), let g, = Vi1 — Vi, set 7, = sup,x gn(x), and let 1, = 7. We let P, and
¢, denote the one-step transition probability and one-step cost obtained on the nth iteration,
and m, denote the invariant probability for P,, if one exists:

Pn = PW”? Cn = CWIT’ 7rn B 7rH)"-

Theorem 6. Under (A1)-(A3), if the VIA is initialized with the Lyapunov function Vy then

foreachn e Z,,

(1) ﬁn—{—l S -ﬁn S —77’
(11) Pn Vn S Vn = Cy =+ ﬁn; . :
(iii) The feedback law w" is regular with 1, <7,,.

Proof. To see (i) we first note that for all n,

Pugn=P,Vyp1+cp — (ann + Cn) Z Vi = Vi = 8n+1. (22)
It immediately follows that 7j, = sup, g,(x) > 7,
The bound (ii) is then a simple consequence of the definitions of V,,; and g,:

PV, = n+l —Cp = Vi — +8& < Vi —cn +ﬁn-

The final result (iii) then follows from theorem 2. O

Hence it pays to initialize the VIA using a stochastic Lyapunov function. If there is a
choice, one should choose the function Vj so that the constant 7j is as small as possible
since this represents a global upper bound on the performance of all succeeding feedback
laws.

43 Convergence

Convergence of the VIA is more delicate than simple stability of the intermediate policies.
A complete proof of the convergence of the functions {4,} given in (20) may be found
(Chen & Meyn 1997) for an initial function Vj satisfying (Al). The case V =0 is
considered (Cavazos-Cadena 1996) under somewhat stronger assumptions on the model.
Here we sketch the main ideas of the proof given by (Chen & Meyn 1997).

The first step is

PROPOSITION 3
Under (A1)~(A3) we have h,(0) = 0 for all n, and for some by < 00

—by < hn(x) < Vo(x) + b, x€ X

Proof. The lower bound follows from theorem 6 and the comparison theorem which
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together give

T—1

- Tp—1
hn(x) = Vo(x) — Va(6) > EV [Z(cn(@(t» - m)J > -7EY [}: ﬂsﬁ(@(r))J

=0 =0

The RHS is uniformly bounded from below by Proposition 3.1.
For the upper bound use minimality of V, to obtain the bound

n—1
(Z co(®(1) + w@@»)n@ > ")J

=0

T5—1
(Z co(®(1)) + Vs, (9)) 1(mp < n)J ’

t=0

Va(x) < Eg

+ EY

where E° is the expectation operator obtained with the policy w’. Subtracting V,,(6) from
both sides then gives

ha(x) < EB

(ni co(®()) + Vo(@(n))) 1(my > n):l + Eg [Ti—: co(cﬁ(t))}
t=0

=0
+ EN(Vaery (6) = Va(8))1 (79 < m)]. (23)

Each of these three terms may be bounded through regularity of w®. From the inequality
PoVo < Vo — ¢ + 77 and theorem 2 we see that the second term is bounded by Vj(x) plus a

constant. The last term is similary bounded since one may show that g;(6) > —by,k > 0,
for some constant b;. Hence

n—1

Vo (0) = Va(6) = — Z gk(0) < bymy.

=n—Ty

The first term is bounded using these same ideas and an inductive argument. O

These uniform bounds may then be used to establish a form of “uniform reguiarity” for
the Markov policies {v" : n > 0}.

Lemma 1. Under (A1)~(A3) there is a fixed constant by such that for all x and n,
E}r’"[n A ’7'9] < bo(Vo(x) +1).

Proof. Letting V(t) = hy—r+1(®(¢)) we can establish the following drift inequality for the

non-homogeneous chain
EYVE+ DIF] S V) - cp(@()+7, 0<i<n.

This is similar to the Lyapunov drift inequality (2.1) and may be used in the same way to
obtain the desired bound on the mean of 79. The bound is uniform in n because of
proposition 1 and proposition 3. O

The next key step is to obtain a uniform bound on

g(x) = HmSUPgn(X), xeX
n—oo
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Lemma 2. Suppose that (Al)—(A3) hold and that the initial value function V satisfies
(1/m)Pr.Vo(x) = 0, n— oo, x€X.

Then

(i) g(x) < ny for every x € X,

(ii) 1imy—co gn(6) = 7.

Proof. There are two steps to the proof. First we show that 8 is maximal in the sense that
8(x) <2(0), xeX

To see this we apply the upper bound P,g, < g,4+1 from (22) to construct a submartingale
under v" defined as M(t) = g,—.1(®(t)). Letting 7 = 75 A n then gives

EY [gn-r+1(2(7))] = EM(7)] 2 M(0) = goy1 (x).

Using this bound and the previous lemma giving uniform bounds on the first moment of 7
we find that for any x,

g(0) = lim sup B [g,—r.1(®(7))] 2 lim sup g1 (x) = g(x).

n-—c

Given that 6 is maximal we then obtain a bound on g(6). We can find a subsequence {n;}
of Z such that for each ¢ the following limit exists pointwise

Wt(X) = z!—l-}glo h‘ni—H'I'

Moreover, from the uniform bounds on {A,} we may choose {n;} so that
PypW, > Wiy — cur + 8(0),

and so that for some by < 00,
—by < W, < Vo + by.

By iteration we then obtain

n—1
PyW, > Wiy — > Plcye +1g(0).
i=0

and from the bounds on {W,} this gives

1 n—1 .
i=0

Letting n — oo we find that the RHS converges to 7., which gives the desired upper bound
g(x) < 8(0) <mu,x eX.
To obtain equality when x = @ involves the identity

Pnhnzhn"‘cn‘l'gna

which implies that 7,(g,) > 1, > n:. An argument based upon Fatou’s lemma then shows
that g(6) > 7,. Since we already have the reverse inequality this shows that g(8) = ..
O
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Combining these bounds we obtain the following main result. Part (iii) follows from
strict uniqueness of solutions to Poisson’s equation which we have established in theorem 3

for the irreducible case only.
Theorem 7. Suppose that (A1)—(A3) hold and that the initial condition Vo satisfies
(1/n)P.Vo(x) =0, n— oo, x e X.
Then '
(i) As n — oo,
&n(0) = mu and  (1/n)V,(6) — n.,

where 1), is the optimal cost;
(i) If heo is any point-wise limit of the sequence {h, : n > 0}, then the pair (heo,ns) is a
solution to the average cost optimality equation (1.4):

(iii) Suppose in addition that ®" is irreducible in the usual sense for any optimal feedback
law w. Then as n — oo,

ho(x) — hy(x), x€ X,

with h., equal to the minimal relative value function. L]

5. Policy iteration

The PIA may be viewed as an optimized form of the VIA. This is seen by considering the
Lyapunov drift inequality which holds at the nth state of the VIA under (A1)-(A3)

cn+ PV, <V, +,. (24)

It is this inequality that ensures regularity of both w” and w"t!, and implies that 1, and 7,4,
are finite. Although there are many solutions to (24) in general, for an irreducible chain the
solution which minimizes the upper bound 7, 18 unique, up to an additive constant. This
‘optimal’ Lyapunov function is #,, the solution to Poisson’s equation, and the minimal
upper bound is 7, the steady state cost under w".

The PIA is then an implementaion of this reasoning: at each stage n the solution to
Poisson’s equation is used to construct the next policy w"t! instead of the value function
V.. Hence we again arrive at a two-step procedure: Given a feedback law w, '

Step 1: Find a solution &, to the Poisson equation
Cn+ Pyhy = hy + T
with inf, A4, (x) > —oo.

Step 2: Compute the next policy through the minimization

w' (x) = arg'min (c, + Pohy(x)).
acA(x)

Although similar in form to the VIA, this algorithm is substantially more computationally
intensive due to the matrix inversion required in step 1.

{

e
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To initialize the algorithm we only need a feedback law w® for which the associated
Poisson equation admits a positive solution. That is, we require an initial regular feedback
law, and we find in theorem 8 below that with this initialization all subsequent feedback
laws will also be regular. This result also establishes bounds on the intermediate solutions
to Poisson’s equation which are tight enough to ensure convergence. For definiteness we
take the specific solution to Poisson’s equation given by

=0

hy(x) = E} [i(cn(@(t)) — 77,,)}, x € X.

Theorem 8. Under (A1)—(A3), suppose that the PIA is initialized with a regular policy,
such as w™'. Then the PIA generates a sequence of regular feedback laws {w" : n > 0} and
relative value functions {h, : n > 0} such that

(i) The average costs are decreasing:
J(X7Wn+l) = M+t _.<_77na HEO,XEX-

(ii) The relative value functions are uniformly bounded from below, and “‘almost”
decreasing: There exists by, by < 0o such that

"bO S hn+l,(x) _<. (1 + b()("?n - 77n+1))h'n + bl(nn - 'rln-l—l)a n Z O,x € X.

(iii) The sequence {h, : n > 0} is pointwise convergent to a limit ho, satisfying, for some
by, by < 0,

—by— < hoo(x) < bgh()(x) + b3, xeX

Proof. The proof is similar to the proof of theorem 6. To begin, observe that for each n the
function &, serves as a Lyapunov function for the transition function P, :

Cp+1 + Pn—}-lhn S hn + - (25)

From the comparison theorem and theorem 2 we conclude by induction that each feedback
law w" is regular and that 7,4 < 7, for all n.

Also using the comparison theorem and (24) we obtain two important bounds: For some
constants by, bs,

Eit![m] < bah(x) +bs, n>0,x€X (26)

and,

Tp—1
q“b]%mwm—mﬁsmw—M@=mm,nzmxex (27)
t=0

The first bound requires some additional work using the “uniformly special” property of
the sublevel sets of ¢ given in Proposition 1.

Since the LHS of (27) differs from the definition of 4,1 only in the use of 7, in place of
Mn+1, We can combine (26) and (27) to obtain

g1 () < en(6) 4 (1 — st ) EXH 0]
< (1 + b4(77n - 77,,,,_1))]1”(}6)-{— b5(77n - 77n+1)'

These arguments complete the proof. O
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From these bounds we may prove a complement to theorem 7.

Theorem 9. Suppose that (A1)~(A3) hold and that the initial condition hy satisfies
(1/n)Ph.ho(x) =0, n— oco,x € X.

Then, as n — oo,
hn(x) = boo(x), M — 1,

where (he,m.) is a solution to the average cost optimality equations, and 7, is the optimal
Cost. O]

6. Networks

We now return to the network scheduling problem described in the introduction. This is
given as the nonlinear state space model (2) with countable state space Zf . Viewed as a
combinatorial optimization problem the scheduling problem possesses unimaginable
complexity. For the idealized model (2) with unbounded buffers and hence countable state
space it is unlikely that any optimal scheduling policy will ever be explicitly computable
except in trivial cases such as a single queue where there is nothing to schedule.
However, when viewed as a dynamic control problem there is much that can be said, and
the general results described in the preceding sections aid a great deal in our understanding
of this control problem. We describe here the form of the optimal policy when the system
state corresponds to a highly congested network. In this region of the state space the

optimal policy approximates the solution to a fluid control problem which attempts to drive
the state towards the origin in an optimal fashion.

The fluid model is described by an ordinary differential equation

d K
Z00 =l — Mu(r), (28)
k=0

where the function u(r) € R¥*! is analogous to the discrete control, and satisfies similar
constraints (Dai 1995). If (28) is to approximate (2) then the control » must depend on
which feedback law w was used for the original discrete model. Suppose, for example, that
w is the last buffer-first served (LBFS) policy which gives priority to a class k customer
over a class j customer at the same machine if and only if k > J» then the control u for the

fluid model (28) will be the same, though it must be described with greater care: at a given
machine o, if s(k) = o then

Z ui(t) =1, whenever Z ¢:(2) > 0.

i2kis(i)=c i2k:s(i)=o

The primary reason for studying (28) is that when properly scaled, this equation
describes approximately the behaviour of the network (2) in a transient phase during which

the network is highly congested. The scaling is through the initial condition &(0) = x
which is assumed to be large: If |x|t is an integer, we set

- #°(0) = (/] D).

For all other ¢ > 0, we define ¢*(¢) by linear interpolation, so that it is continuous and
piecewise linear in . Note that |¢*(0)| =1, and that ¢* is Lipschitz continuous.
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One can show that for large x the process ¢* is an approximate solution to (28) for some
choice of u.

In this section we describe qualitatively the consequences of the relationship between (2)
and (28) to the network scheduling problem. We will not make many precise statements —
for theorems and proofs, the reader is referred to the papers by (Dai 1995; Kumar & Meyn
1996) for connections with stability, and (Chen & Meyn 1997; Meyn 1997) for results
pertaining to network optimization and optimization of the fluid model (28).

6.1 The relative value function

To understand the minimal relative value function A, for the network control problem we
first must understand regularity in this context. For any feedback law w it may be shown
using the skip-free property that |®(z + 1)| > |®(¢)|— 1 that

T—1

hu(a) 1= 2 | Y (6(@(0),w(3())) - )| > ;- Bn),

=0

where 6 denotes the empty state in which every buffer is empty. Thus the function A,
satisfies the same lower bound.

Provided that the network can be stabilized (that is, the usual traffic condition that p<l
holds) for many policies we can obtain a quadratic upper bound

he(x) < bo(lx* +1), x€ X,

where by is some fixed constant. This bound holds for the last buffer-first served policy, for
example. Hence the minimal relative value function must be equivalent to a quadratic in
the sense that for some € > 0, by < oo,

elx* — by < hy(x) < €M x|* + by, x€X.

These observations are a consequence of the following result taken from (Kumar & Meyn
1996; Meyn 1997b). Although this result is stated as a list of “properties”, the reader must
be warned that many of the results given here are not entirely precise as stated.

Property 1. The following are equivalent for any feedback law w:

(i) There exists a solution V to the Foster-Lyapunov drift criterion (7) which is
equivalent to a quadratic.
(i) There exists a solution to Poisson’s equation (10) which is equivalent to a quadratic.
(iii) The “total cost” for the fluid model is uniformly bounded: For some By < 00

o0
/0 I6(1)|dt < Bo.
O
The fluid limit model will be called stable if property 6.1 (iii) is satisfied. That is, the
total cost for the fluid model is uniformly bounded over all initial conditions satisfying
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|$(0)] = 1. It will be useful to consider the minimal cost for the fluid model given by
o0
Vi(x) = min/ |o()|dr;  o(0) = x,x € X, (29)
0

where the minimum is over all possible controls u for the fluid model.

The equivalence expressed in property 1 can be refined to show that in fact the fluid
model is stable in the sense of (iii) then the solution to Poisson’s equation in (ii) can be
approximated by the total cost:

h(x) ~ /0 T l6(0ldr,  when 6(0) = x, x| > 1. (30)

This suggestive approximation leads to an interesting implementation of the VIA, and is
also used to show that the PIA for the network simultaneously acts as the policy
improvement algorithm for the fluid model which computes the value function V.. These
connections will be explored next.

6.2 Algorithms

We have seen that the PIA leads to the pair of equations

Pnh—n zhn —C'l"'r]n
Pn-i—lhn S h-n —Cc+ Ty

where here we are taking c¢(x)= |x|. If h, is quadratically bounded, then it follows from
theorem 2 and the above inequality that 4,4, is also quadratically bounded. Hence, from
property 1 if the initial feedback law w® is chosen so that its fluid model is stable, then all
subsequent policies will have stable fluid models.

From these equations we can also show that 1 (x)/|x]* < hn(x).|x}* + o(1), where the
term o(1) is bounded by a constant times 1/|x|. From (30) we then obtain the following.

Property 2. If the initial feedback law w° is chosen so tht the fluid model is stable, then

(i) The PIA produces a sequence {(W",hy,m,) : n < 0} such that each associated fluid
model is stable. Any feedback law w* which is a pointwise accumulation point of {w"}
is an optimal average cost policy.

(1) For each n < 1, with identical initial conditions,

[Tieeies [Te ol

Hence if w® is optimal for the fluid model, so is w" for all n.

(ili) With ¢* equal to the fluid solution for any optimal feedback law w* generated by the
algorithm, and h, equal to the minimal relative value function

halx) = i /0 T 6)lds, 60) = x/lx > 1.

Hence, when properly normalized, the relative value function approximates the value
function for the fluid model control problem.

A
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(iv) With ¢ equal to the fluid solution for any optimal feedback law w* generated by the
algorithm, and ¢ equal to any other ﬂuzd model solution with identical initial
condition ¢*(0)= ¢(0)= x,

/0 56l < [ ol

Hence the limiting feedback law w* is optimal for the fluid model. O

Property 2 (iii) leads to a candidate function Vj to inititialize the value iteration algorithm.
Note that if we by luck chose the initial function V{ exactly equal to 4, then we would find
that V,, = h, + nn, for each n. While we will never be so lucky in this optimization problem,
given (iii) it is very sensible to use the value function V, given in (29) as an initial condition
in the VIA since, at least for large x, this is approximately equal to #,.

While the function V. given (29) is not easily computable in general, we can obtain an
approximation based upon a finite-dimensional linear program (Humphrey et al 1996). If a
sufficiently tight approximation to (29) is found then one can expect that (A1) will hold for
this approximation.

We illustrate this approach with the three-buffer example illustrated in figure 1. We have
computed explicitly the value function V, for the optimal fluid policy using the optimal
fluid policy given (Weiss 1995). For comparison we have also computed the value function
Vo = Vigrs for the fluid model under the LBES policy.

Three experiments were performed based upon three different initializations: Vy = 0,
which is the standard VIA; Vy = Vigps; and Vo = V.. The results from two experiments are
shown in figure 3.

L]
12.6¢ Jw")
12.4F Standard VIA
______ Initialized with optimal fluid value function
122\ e Initialized with LBFS fluid value function

12

11.8

116

11.4

1.2

N
1

Figure 3. Convergence of the VIA with V; taken as the value function for the
associated fluid control problem. Two value functions are found: one with the optimal
fluid policy, and the other taken with the LBFS fluid policy. Both choices lead to
remarkably fast convergence. Surprisingly, the “suboptimal” choice using LBFS leads
to the fastest convergence of J(w") to the optimal cost 7, ~ 10.9.
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We have taken truncated buffer levels to 33 in the model to obtain a chain with 33 =
35,937. In each experiment value iteration was performed for 300 steps, saving data for
n=10,...,300. The parameter values (), w1, uopt3) are given by [7]. The convergence is
slow when Vg = 0, but exceptionally fast in the other two experiments. Surprisingly, the
“suboptimal” choice using LBFS leads to the fastest convergence.

In summary, the optimal value function for the fluid model does approximate the
minimal relative value function. We see this in a general result, and through the experiment
illustrated in figure 3.

The question then is, how can we use this insight in network design? In a real, discrete
queueing network with a large number of stations, it is natural to construct a policy which
uses the optimal fluid policy to regulate the buffer levls to some desirable, perhaps optimal,
mean value. Attempting to maintain some non-zero steady state in this way has two
desirable features. One is that when problems arise causing network congestion, the policy
will resemble the optimal fluid policy as desired. In normal operating conditions when the
state stays near some target level we expect good performance since states are neither too
large, nor too small. Small buffer levels are not necessarily desirable since starvation of
work to a queue can lead to a loss of resource utilization, burstiness, and even instability.

Some initial experiments on a class of policies based upon these ideas were introduced by
(Meyn 1997b), which also includes some positive numerical experiments.

7. Extensions

Many extensions of these results are possible. The general state space case is particularly
important in the network problem since it is unfortunate to be forced to assume that service
times and interarrival times are exponentially distributed, as we did in the previous section.

Here we describe three situations which lie outside of the class of models which have
been considered in this paper. We merely lay some foundation for extending the results of

this paper to the more general, or more complex setting. Details may be found in the
appropriate references.

7.1 General state spaces

The situation where X is uncountable, such as X = R", is typical in many MDPs
encountered in practice. The techniques used in this paper can be extended to this more
complex setting provided that (A1)-(A3) are modified appropriately.

A complete treatment of the PIA is given by (Meyn 1997) where (A3) is replaced by

(A3'): There is a fixed probability v on B(X), a § > 0, such that for any feedback law w
satisfying 7, < n,

Ky(x,A) > 6u(A) forallxe S, n>0, A € B(X),

where S denotes the sublevel set
§={x:minc(x,a) > 2m}. (31)
a
Most of the proofs go through essentially unchanged with the solution to Poisson’s

equation given by (9) instead of (10) which depends upon an accessible state. Using these
ideas it is shown (Meyn 1997a) that the PIA converges for general state space models, and

b
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from this the results of the previous section concerning optimfzation of networks carry over
without modification.

7.2  Continuous time

Continuous time models are easily treated using these same techniques, even for general

state space models. Again, the main issue is understanding Poisson’s equation, which in
continuous time takes the form

Dyoh = —cpo + 10, ' (32)

where D,0 denotes the generator of the process under the feedback law w°. The existence

of well-behaved solutions to (32) follows under conditions analogous to the discrete time
case (Glynn & Meyn 1996).

To see how the optimality equations appear, and how one can establish existence of an
optimal policy, suppose w* is a feedback law such that for any other feedback law w,

Cy ~+ Dw*h S Cw + th
If h solves Poisson’s equation (32) with w® = w* then the bound above may be written,
M < Cw + Dyh,

and then by the definition of the extended generator,

T
me <7 | Ede @+ (PG — (0.

This bound holds for any x, and any T' > 0. Letting T — oo, it follows that

T
liminf—]l; /0 Exow(3)]df > e,

T—o00
provided that
(1/T)Pr h(x) — 0, as T — oo.

To construct a solution to Poisson’s equation it is simplest to first establish a solution to
Poisson’s equation for the resolvent defined by

o0
R, = /0 e'Pdt.
Suppose that a solution to the Poisson equation is found for thg resolvent:
Ryg =8 —cw+.
Using the formula D,R,, = R,, — I we may set h = R,,g to obtain

Dyh =DyRyg = (Rw - I)g = —Cy + M-

Since stability properties of the continuous time process and the resolvent are _essentially
equivalent (Down et al 1996; Meyn & Tweedie 1992), one can construqt solutions to the
Poisson equation and the minimal relative value function under assumptions analogous to
(A1)-(A3).



364 Sean Meyn

The PIA in continuous time is given as follows. Suppose that the policy w"™! is given,
and that h,_ satisfies Poisson’s equation

Dn——lhn_l = —Cp-1,

where we again adopt the notation used iIll the discrete time development. This equation has
a solution provided that the chain " is ¢,_-regular (Glynn & Meyn 1996). A new
feedback law w” is then found which satisfies, for any other feedback law W,

Cn+ Dw”hn—l <cpt thn—-l-

To see when this is an improved policy, let w = w""!: from the inequality above, and
Poisson’s equation which 4,_; is assumed to satisfy, we have

Dby < —cp + M1

This is a stochastic Lyapunov drift inequality, but now in continuous time. Again, if h,_, is
bounded from below, if ¢, is norm-like, and if compact sets are petite, then the process o
is ¢,- regular, and we have 7, < 1,_;.

Since the feedback law w” is so well-behaved, one can assert that Poisson’s equation

Dyhy, = —Ch,

has a solution /, which is bounded from below, and hence the algorithm can once again

begin the policy improvement step. Results analogous to theorem 9 can then be formulated
using almost identical methodology (Meyn 1997a).

1.3 Risk sensitive control

The techniques described here may also be extended to other control criteria. One which
has attracted much recent attention is the “risk sensitive” criterion,

n—1
R(x,a) = lim sup %log (Ex Iiexp (Z c(®(2), a(t)))] > : (33)

=00 =0

The use of the exponential reduces the probability of large excursions of the state since the
one-step cost ¢ satisfies condition (A2).

Under certain conditions on the model, in particular, under the assumption of linearity,
the controls that optimize (33) are known to be robust to model uncertainty. In general, it
may be shown that any stationary policy which gives rise to a finite risk senstive cost will
enjoy some attractive properties. In particular, the controlled chain is geometrically ergodic
(Borkar & Meyn 1998), which itself implies some degree of robustness to model uncer-
tainty (Glynn & Meyn 1996).

The first step in solving this control problem is to define an appropriate analogue of the
relative value function. We first define the cost over one cycle via

A, = in:f{A >0:Ey [exp (Tf:l[c(tb'(t),w’(@(t))) - A])} < 1}

t=0

We then let A, :=infA,, where the infimum is over all Markov policies, and set

A= exp(A,). It is shown by (Borkar & Meyn 1998) that R(x,w)> A, for any Markov
policy.
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A candidate relative value function and optimal policy are defined respectively as
follows: For each x € X,

hi(x) = rnm'%n EY \:exp (TOZ_ [c(@(t), W' (B(2))) — Ad)} (34)
=0
wh(x) := argergin (exp(c(x,a))Pyh(x)), (35)

where in (35) the feedback law w* is taken to be any solution to the minimization.
With these definitions we find the following

PROPOSITION 4
Suppose that (A1)~(A3) hold, and suppose that 1, < oc. Then the function h. satisfies the
following bounds

() h(0)=1;
(ii) exp(cyr(x))Phy(x) < Mhyy, X € X
(iii) infyex h«(x) > 0.

Property (i) follows from minimality of A,; (ii) follows from dynamic programming
arguments, exactly as in the proof of theorem 5 and (iii) follows from proposition 1 (ii) and
Jensen’s inequality: for any Markov policy,

log EY [ﬂxp (i [c(2(1), w'(2(1))) -*A*]ﬂ >E; {i[ff(‘b(t), w(2(1))) = Ad]

=0 =0
Z ’_A.*B (A*) .
This uniform lower bound then gives a uniform lower bound on A.. O

It is property (ii) that implies the geometric recurrence for the chain under the policy w*.
This inequality combined with the uniform lower bound (iii) implies that A, acts as a
stochastic Lyapunov function for the process, satisfying a bound far stronger than (7,
which implies in particular that

EY [ew (2(2))] = 7(c),

geometrically fast as t — oco. See (Borkar & Meyn 1998) for other consequences.
The optimality of w* is proven by iterating (i), which gives

EY [GXP (ni[cw* (q’(t))) h*(fb(n))} < Abha(x).

t=0

Using this and the lower bound (iii) shows that R(x,w*) = A, for any x € X, :=
{x: hi(x) < 0o}. The set X, is all of X if the chain " is irreducible.

When assembled together this leads to the following existence theorem for solutions to a
dynamic programming equation.

Theorem 10. Suppose that (A1)—(A3) hold and that A, < co. Then
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(i) The function h. solves the dynamic programming equation

min_exp(c(x, a))Ph.(x) = Ahy;

acA(x)
(i) Any feedback law w* satisfying
min_exp(c(x,a))Pgh.(x) = exp(cy (x)) Pyrhi(x), x€ X, (36)

acA(x)

is optimal over all Markov policies;
(ili) Any feedback law w* satisfying (36) minimizes the “relative cost”: For any Markov

policy w,
ha(x) = EY {exp (”Z_w(@(t)) - A*))]
t=0 -

T9—1
<Er [exp <Z<c(¢><r>,wf(<1>(r>>> -A*>>].
t=0

(iv) It (hy,w™) is any other solution to (4) for which inf ex hy (x)> —00, then Py+ has a
unique invariant probability 7., and

hi(x)/h(0) = hi(x), mu(x)>0;
hi(x)/hy(0) > hi(x), forall(x).

O

Given the relative value function 4, and the analogous theory of the “multiplicative
Poisson equation” developed by (Balaji & Meyn 1998) one can then construct multi-
plicative versions of the PIA and VIA, and prove convergence using approaches similar to
those presented here.
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