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Abstract— This paper is concerned with an information-
theoretic framework to aggregate a large-scale Markov chain
to obtain a reduced order Markov model. The Kullback-
Leibler (K-L) divergence rate is employed as a metric to
measure the distance between two stationary Markov chains.
Model reduction is obtained by considering an optimization
problem with respect to this metric. The solution is just the
optimal aggregated Markov model. We show that the solution
of the bi-partition problem is given by an eigenvalue problem.
To construct a reduced order model with m super-states, a
recursive algorithm is proposed and illustrated with examples.

I. I NTRODUCTION

An important new tool for understanding multi-scale phe-
nomenon is based on the spectral theory of Markov models.
For a stationary Markov chain on a finite dimensional
state space, the second eigenvalue is precisely the rate of
convergence to stationarity. A more recent contribution to
the spectral theory of Markov models is the use of the
second eigenvector (or eigenfunction) to obtain the intuition
regarding dynamics, as well as methods for aggregation
in complex models. In dynamical systems settings, this
technique was introduced as a heuristic in [1], [2] to obtain
a state-space decomposition based on an analysis of the
Perron cluster of eigenvaluesfor the generator of a Markov
process. The technique has been applied in diverse settings:
[1] considers analysis of the nonlinear chaotic dynamics of
Chua’s circuit model, [2] concerns molecular models, and
[3] treats transport phenomena in building systems. In each
of these papers, it is shown through numerical examples that
the associated eigenvectors carry significant informationre-
garding dynamics. In particular, its sign-structure can beused
to obtain the partition information for defining super-states.
Theory to support this aggregation technique is contained
in [4], [5], based on a change of measure similar to what is
used to establish large deviations asymptotically, following
[6]. These results may be regarded as an extension to the
classical Wentzell–Freidlin theory [7].

The spectral method has close connections to both the
classical notion ofnearly completely decomposableMarkov
chain (NCDMC) [8] and the notion ofcut in spectral graph
theory [9]. For an NCDMC, the state space can be naturally
divided into groups with strong interactions within each
group and weak interactions among different groups. Such a
decomposition is consistent with sign-structure of the second
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eigenvector and an assumption on a spectral gap between
the second and the rest of the eigenvalues. Aggregations
of states within each group can then be justified using a
singular perturbation framework (see [10]): over the long
time-period that weak interactions become significant, the
strongly interacting states within each group can be treated
as an aggregated super-state.

A related notion is that of acut that is used for partitioning
a graph. A symmetric Markov chain may be represented as
an undirected graph where vertices of the graph denote states
of the Markov chain and (weights on) edges represent the
transition probabilities between states. A cut is defined to
be a certain normalized sum of weights that are removed
to obtain a bi-partition (into two groups) of the graph. In
terms of a minimal cut, the optimal solution for the bi-
partition problem is described by the sign-structure of the
second eigenvector of the Markov transition matrix [9]. The
resulting decomposition algorithms have been extensively
used in applications including image segmentation, clustering
and graph partitioning.

The objective of this paper is to examine decomposition,
aggregation and model reduction issues for Markov chains
in information-theoretic terms. The goal is to construct an
information-theoretic basis for both interpreting classical and
more recent spectral methods, and deriving new error bounds
and algorithms for model reduction of Markov chains. In
particular, we seek to explain the significance of the second
eigenvector in these terms.

The consideration of this paper rests on the use of
Kullback-Leibler divergence rate metric forstationary
Markov chains [11]. With K-L metric, the model reduction
problem is expressed as an optimization problem. Taking
bi-partition problem as an example, the solution is shown
to be given by the sign-structure of the second eigenvector
consistent with the spectral theory of Markov models. To
construct a reduced order model withm super-states, a re-
cursive algorithm is proposed and illustrated with examples.

The remainder of this paper is organized as follows: In
Section II, we define the metric used to compare Markov
chains. In Section III, we pose an optimization problem with
respect to this metric and describe the results for bi-partition
case. In Section IV, we describe several examples.

II. M ETRIC

A. Preliminaries and notations

We consider a first-order homogeneous Markov chainXt
defined on a finite dimensional state spaceN = {1, 2, . . . , n}
(see [12] for terminology). The following notations are
adopted throughout the paper: The state value at timet is



denoted asX(t), the initial conditionX(0) is denoted as
x0 ∈ N , ν0 ∈ P(N ) is used to denote the probability distri-
bution of the initial conditionx0. The transition probability
between states is described by an × n stochastic matrixP
whoseijth entry is given by

Pij = Prob(X(t+ 1) = j | X(t) = i), i, j ∈ N . (1)

A Markov chain is said to bestationaryif it has a unique
stationary distributionπ such that

π = πP, (2)

where πi > 0 for all i ∈ N . We use the tuple(π, P )
to denote a stationary Markov chainP with stationary
distributionπ.

B. K-L divergence rate for Markov chains onN

For two stationary Markov chains(π, P ) and (θ,Q) de-
fined on the same state spaceN , the K-L divergence rate is
given by the following formula (see [11]):

R(P ‖ Q) =
∑

i,j∈N

πiPij log

(
Pij

Qij

)

. (3)

To ensureR(P ‖ Q) is finite, we requireP to beabsolutely
continuousw.r.t. Q, i.e.Qij = 0 ⇒ Pij = 0.

C. K-L divergence rate for Markov chains on different state
spaces

In this paper, we are interested in comparing two Markov
chainsP and Q defined onN and M respectively. The
relationship betweenN andM is described by a partition
function φ.

Definition 1 (partition function) Let N = {1, 2, . . . , n}
and M = {1, 2, . . . ,m} be two finite dimensional state
spaces withm ≤ n. A partition functionφ : N 7→ M is
a surjective function fromN ontoM. For k ∈ M, φ−1(k)
denotes thekth group inN .

Since we already have a formula for comparing two
Markov chains on the same state space (see (3)), the strategy
is to use the partition functionφ to lift the Markov chainQ
to the original state spaceN . The lifted Markov chain is
denoted aŝQ.

Definition 2 (µ-lifting of Q) Let φ be a partition function
on N and µ be a probability measure onP(N ). Let M
denote the range ofφ andQ be a Markov transition matrix
on M. Thenµ-lifting of Q with the partition functionφ is
a Markov matrix onN defined as

Q̂
(µ)
ij (φ) =

µj
∑

k∈ψ(j) µk
Qφ(i)φ(j), i, j ∈ N (4)

whereψ(j) = φ−1 ◦ φ(j) ⊂ N denotes the set of states
belonging to the same group as thejth state.

The definition of the K-L divergence rate is extended to
two chains ondifferent state spacesusing the lifted chain:

Definition 3 Let (π, P ) denote a stationary Markov chain
on N and (θ,Q) a Markov chain onM. Then

R(φ)(P ‖ Q)
∆
= min
µ∈P(N )

R(P ‖ Q̂(µ)(φ)), (5)

whereQ̂(µ)(φ) denotes theµ-lifting of Q with the partition
functionφ.

Theorem 1 Suppose that(π, P ) is a stationary Markov
chain onN , φ is a partition function with rangeM with
m ≤ n, and (θ,Q) is a stationary Markov chain onM.
Then, there is a unique matrix̂Q(µ∗)(φ) that achieves the
minimum in (5). The optimizerµ∗ can be taken to be the
stationary distribution ofP :

π ∈ arg min
µ∈P(N )

R(P ‖ Q̂(µ)(φ)). (6)

Note that the theorem does not say thatµ∗ is unique. A
probability measureµ minimizes (5) if and only if there
exists constants{Kl, l ∈ M} satisfying

πj

µj
= Kl, ∀j ∈ φ−1(l), l ∈ M. (7)

The corresponding matrixQ̂(µ)(φ) then coincides with
Q̂(π)(φ).

Proof of Theorem 1:On denoting,

Rφ(P ‖ Q) =
∑

i,j∈N

πiPij log

(
Pij

Qφ(i)φ(j)

)

(8)

the K-L divergence rate (3) between(π, P ) and the lifted
Markov chain(θ̂(φ), Q̂(µ)(φ)) is expressed as

R(P ‖ Q̂(µ)(φ)) =
∑

i,j∈N

πiPij log

(

Pij

Q̂
(µ)
ij (φ)

)

,

= Rφ(P ‖ Q) −
∑

i,j∈N

πiPij log
µj

∑

k∈ψ(j) µk
,

= Rφ(P ‖ Q)
︸ ︷︷ ︸

term (i)

−
∑

j∈N

πj log
µj

∑

k∈ψ(j) µk
︸ ︷︷ ︸

term (ii)

,

(9)

where we used the fact thatπj =
∑

i∈N πiPij (see (2)).
In (9), term (i) is independent of the probability measureµ

and term (ii) is independent of the Markov transition matrices
P andQ. Thus, we only need to consider the term (ii) of
R(P ‖ Q̂(µ)(φ)) to find the optimalµ ∈ P(N ). Using (9)
and settingl = φ(j), we have

R(P ‖ Q̂(π)(φ)) −R(P ‖ Q̂(µ)(φ))

=
∑

l∈M

(
∑

k∈φ−1(l)

πk) log

∑

k∈φ−1(l) πk
∑

k∈φ−1(l) µk
−
∑

j∈N

πj log
πj

µj
,

≤
∑

j∈N

πj log
πj

µj
−
∑

j∈N

πj log
πj

µj
= 0,

where the log sum inequality(see [13]) is used and the
equality holds if and only if (7) is satisfied.



Thus R(P ‖ Q̂(π)(φ)) ≤ R(P ‖ Q̂(µ)(φ)) for all µ ∈
P(N ). Note that the optimal choice of probability measure
is not unique andµ = π is one of the optimal choice which
minimizesR(P ‖ Q̂(µ)(φ)).

The formula (9) in the proof of Theorem 1 will also
be useful in obtaining further results. For this purpose, we
summarize the formula for the caseµ = π in the following:

Lemma 2 Under the assumptions of Theorem 1,

R(P ‖ Q̂(π)(φ)) = Rφ(P ‖ Q) − S(π, φ), (10)

whereRφ is defined in(8), and

S(π, φ) =
∑

j∈N

πj log
πj

∑

k∈ψ(j) πk
. (11)

III. O PTIMIZATION PROBLEM

A. Problem statement

Let (π, P ) be a given stationary Markov chain onN . The
m-partition problem, is to find the partition functionφ :
N 7→ M and the optimal aggregated Markov chain(θ,Q)
such thatR(φ)(P ‖ Q) is minimized:

min
φ,Q

R(φ)(P ‖ Q)

s.t.
∑

l∈MQkl = 1, k ∈ M
Qkl ≥ 0, k, l ∈ M

(12)

whereR(φ)(P ‖ Q) = R(P ‖ Q̂(π)(φ)) and constraints arise
due to the stochastic property of Markov transition matrix.

The optimization problem (12) is amixed-integer nonlin-
ear program. In general, it is intractable for Markov chains
with large state spaces.

B. Optimal solution ofQ

It turns out that the main difficulty in solving (12) is in
finding the optimal partition function. The following theorem
shows that for a fixed (say an optimal) partition functionφ,
the solution ofQ that solves (12) can be easily obtained.

Theorem 3 Let (π, P ) be a given Markov chain onN and
φ be a partition function defined onN with the rangeM.
For problem (12), ifφ is fixed, the optimal solution ofQ is
given by

Qkl(φ) =
v(k)ΠPv(l)′

v(k)Πv(k)′
, k, l ∈ M (13)

whereΠ = diag(π), v(k)′ is the transpose ofv(k), andv(k)

is a 1-by-n row vector whoseith entry is given by

v
(k)
i =

{
1 if φ(i) = k,

0 otherwise.
(14)

The stationary distribution ofQ is given by

θk(φ) = v(k)Πv(k)′ , k ∈ M. (15)

Proof: Noting thatR(φ)(P ‖ Q) is a convex function
with respect toQ, we introduce the Lagrange function for
the optimization problem (12)

L = R(φ)(P ‖ Q) +
∑

k∈M

λk(
∑

l∈M

Qkl − 1), (16)

where {λk, k ∈ N} are Lagrange multipliers. Applying
Lemma 2, we have

L = Rφ(P ‖ Q) − S(π, φ) +
∑

k∈M

λk(
∑

l∈M

Qkl − 1). (17)

On taking the derivative with respect toQkl,

∂L

∂Qkl
=

∂

∂Qkl

(

Rφ(P ‖ Q) +
∑

k∈M

λk(
∑

l∈M

Qkl − 1)

)

= −

∑

i∈φ−1(k)

∑

j∈φ−1(l) πiPij

Qkl
+ λk.

(18)
Setting the right hand side of (18) equal to zero, we have

Qkl =

∑

i∈φ−1(k)

∑

j∈φ−1(l) πiPij

λk
, k, l ∈ M. (19)

The Lagrange multipliers{λk, k ∈ N} are obtained by
using the constraints

1 =
∑

l∈M

Qkl =

∑

i∈φ−1(k) πi

λk

∑

j∈N

Pij ,

where we used the fact thatφ : N 7→ M is a surjective
function, so

∑

l∈M

∑

j∈φ−1(l)

Pij =
∑

j∈N

Pij .

Now, noting thatP is a stochastic matrix, we have

1 =

∑

i∈φ−1(k) πi

λk
⇒ λk =

∑

i∈φ−1(k)

πi. (20)

Finally, substituting (20) into (19), we get

Qkl(φ) =

∑

i∈φ−1(k)

∑

j∈φ−1(l) πiPij
∑

i∈φ−1(k) πi
, k, l ∈ M

which is just the formula shown in (13). Stationarity of (15)
with respect toQ(φ) follows from a trivial calculation.

For a given partition, (13) gives the entries of optimal
Q(φ). We denote it asQ(v(1), v(2), . . . , v(m)), where in-
dicator functions{v(k), k ∈ M} are defined by partition
function φ (see (14)). Using this notation, them-partition
problem becomes finding only the partition functionφ such
thatR(φ)(P ‖ Q(v(1), v(2), . . . , v(m))) is minimized:

min
φ:N 7→M

R(φ)(P ‖ Q(v(1), v(2), . . . , v(m))). (21)

C. Optimal partition function for the bi-partition problem

In this section, we consider the special case of (21), where
m = |M| = 2. This is referred to as thebi-partition problem.
In this case,v(2) = 1 − v(1). We denotev = v(1) and use
the notationQ(v) to denoteQ(v(1), v(2)). We refer tov as
a bi-partition function. For a givenv, the optimal solution
Q(v) is a 2 × 2 matrix whose entries are obtained using
Theorem 3.



Lemma 4 Let (π, P ) be a given Markov chain onN and
φ be a given bi-partition function defined onN with range
M = {1, 2}. The optimal solution ofQ is given by

Q(v) =

[
α(v)
β(v)

β(v)−α(v)
β(v)

β(v)−α(v)
1−β(v)

1−2β(v)+α(v)
1−β(v)

]

, (22)

wherevi = 1lφ−1(1)(i), Π = diag(π), α(v) = vΠPv′ and
β(v) = vΠv′. The stationary distribution ofQ is given by

θ(v) = [β(v), 1 − β(v)]. (23)

Proof: In the notation of Theorem 3,v(1) = v and
v(2) = 1 − v where1 denotes a1-by-n row vector with all
ones. Substitutingv(1) andv(2) into formula (13), we have

Q(v) =

[
vΠPv′

vΠv′
vΠP (1−v)′

vΠv′
(1−v)ΠPv′

(1−v)Π(1−v)′
(1−v)ΠP (1−v)′

(1−v)Π(1−v)′

]

. (24)

Noting thatvΠP (1− v)′ = (1 − v)ΠPv′ = β(v) − α(v)
and (1 − v)Π(1 − v)′ = 1 − β(v), we get entries ofQ in
(22). The stationary distribution (23) ofQ directly follows
from (15) in Theorem 3.

Using Lemma 4, we can representQ in the optimal form
(22) in terms of bi-partition functionv. Then using Lemma 2,
we can representR(φ)(P ‖ Q(v)) as

R(φ)(P ‖ Q(v)) = (H1(Q) −H0(θ))
︸ ︷︷ ︸

term (i)

− (H1(P ) −H0(π))
︸ ︷︷ ︸

term (ii)

,

(25)
whereH0 denotes the standard entropy andH1 is its Marko-
vian analog:

H1(Q) = −
∑

k,l∈M

θk(v)Qkl(v) logQkl(v),

H0(θ) = −
∑

k∈M

θk(v) log θk(v),

H1(P ) = −
∑

i,j∈N

πiPij logPij , H0(π) = −
∑

i∈N

πi log πi.

These formulae are obtained by substituting (22) and (23)
into (10). Note that term (ii) in (25) is independent of the
bi-partition functionv. Thus the optimization problem (21)
is equivalent to the following problem,

min
v

[H1(Q(v)) −H0(θ(v))]. (26)

Since bothQ(v) andθ(v) can be represented in terms of
α(v) andβ(v), then we define

F (α, β)
∆
= H1(Q) −H0(θ)

= − 2(β − α) log(β − α) − (1 − 2β + α) log(1 − 2β + α)

− α logα+ 2β log β + 2(1 − β) log(1 − β)
(27)

We are interested in choosingv that minimizes
F (α(v), β(v)):

min
vi∈{0,1}

F (α(v), β(v)). (28)

An exact solution of (28) may be obtained by searching
over 2n possibilities for vectorv. To obtain an approximate

solution, one may consider relaxing integer constraints on
vi. One particular relaxation is to letvi ∈ R and consider an
optimization problem:

min
vi∈R

F (α(v), β(v)). (29)

To obtain the solution, we take the derivative of the func-
tion F (α(v), β(v)) with respect tov. Setting the derivative
equal to zero, after some algebraic manipulations, we obtain
the following necessary condition for a minimizerv∗:

dα

dv
(v∗) = λ∗(α(v∗), β(v∗))

dβ

dv
(v∗), (30)

where

λ∗(α, β) =
log (1−β)2(β−α)2

β2(1−2β+α)2

log (β−α)2

α(1−2β+α)

.

Substituting the formulae forα(v) andβ(v) (see Lemma 4)
into (30), we see that an optimal solutionv∗ of the relaxed
problem (29) solves the following eigenvalue problem:

P̂ v∗
′ = λ∗Πv∗′, (31)

where λ∗
∆
= λ∗(α(v∗), β(v∗)), and P̂ = ΠP+P ′Π

2 is a
symmetric matrix.

As a result, a solution to (29) may be obtained by consid-
ering a generalized eigenvalue problem (31). We denote its
eigenvalues as{1, λ2, . . . , λn} sorted in a decreasing order.
Although we do not give details here, we propose that the
optimal solution to (29) is obtained by setting

λ∗ = max{|λ2|, |λn|}. (32)

Let u(2) denote the associated eigenvector corresponding to
the second largest eigenvalue in magnitude. Usingu(2), a
sub-optimal partition function to the original problem (28)
may be obtained as,

vi =

{

1 if u(2)
i ≥ 0

0 otherwise
, i ∈ N . (33)

Based on these considerations, we conclude that: For a
nearly completely decomposable Markov chain (NCDMC)
(π, P ), whenλ2(P ) ≈ 1 and |λn(P )| < λ2(P ), a solution
to the bi-partition problem may be obtained by considering
the sign-structure of the second eigenvector. We note that the
solution proposed here is consistent with the results of [4],
[5], [9], [14].

D. A recursive algorithm to obtainm partitions

Since the bi-partition problem can be solved by consid-
ering the second eigenvector, we propose a recursive bi-
partition algorithm to obtain a sub-optimal solution for the
m-partition problem (12). The K-L divergence rate serves
as the error bound for model reduction and the recursive
algorithm is described as follows:

During themth-iteration of the algorithm, we assume that
a partition withm groups (or super-states) is given. The
objective of themth iteration is to obtain a refinement that
hasm + 1 groups. Fori = 1, . . . ,m, we denoteP (i) to be
the sub-Markov transition matrix that describes the transition
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Fig. 1. The graph of the100-state Markov chain.

Fig. 2. The graph of the aggregated5-state Markov chain obtained using
the recursive algorithm.

probabilities within theith group. Theith group is split into
two sub-groups according to the sign-structure of the second
eigenvector for(Π(i), P̂ (i)) (see (31) and (33)). The spectral
split of the ith group alone provides a partition of the states
intom+1 groups. We denote this partition asφ(i), and use it
to evaluate the optimal reduced order modelQ(i) according
to (13). From the resultingm possible choices ofm + 1
partitions, we select the one that minimizesR(φ)(P ‖ Q(i)),
i.e.,

imin = arg min
i∈{1,...,m}

R(φ)(P ‖ Q(i)).

The m + 1 super-states correspond to the originalm − 1
super-states from the previous iteration together with two
super-states obtained from the spectral split of theithmin super-
state. The associated reduced order model is given byQ(imin).

IV. EXAMPLES AND DISCUSSIONS

In this section, we present some examples to illustrate the
theoretical results described in preceding sections.

A. Block partitioning example

The 100-state stationary Markov chain for this example
is taken from [15]. Fig. 1 depicts the transition probabilities
for this chain. The cold colors indicate weak interactions
(small transition probabilities), and warm colors indicate
strong interactions (large transition probabilities) between
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Fig. 3. The K-L divergence rate as a function of the number of aggregated
states.

Fig. 4. Layout of the Building Model:−×−×− corresponds to a single
sample path of the agent,◦ are the sensors, gray grid spaces are walls, and
the black grid space is the exit. The agent starts in the bottom-right corner
and proceeds toward the exit by a random walk.

states. The color plot suggests that the Markov chain is nearly
completely decomposable with five groups.

In the following, we employ the recursive algorithm to
obtain a reduced order model. Withm = 1, all states are
aggregated into a single group andR(φ)(P ‖ Q(1)) = 0.247.
The bi-partition problem (m = 2) is solved by considering
the sign-structure of the second eigenvector for(Π, P̂ ) (
see (31) and (33)). The resulting2-state Markov model has
error R(φ)(P ‖ Q(2)) = 0.176. The recursive algorithm
correctly identifies five groups in the fifth recursion. Fig. 2
depicts the transition probabilities for the resulted reduced
order modelQ(5). Fig. 3 depicts the error bound (K-L
divergence rate) as a function of the number of aggregated
statesm = |M|. The error bound plot shows thatR(φ)(P ‖
Q(m)) decreases rapidly fromm = 1 tom = 5. Withm = 5,
R(φ)(P ‖ Q(5)) = 0.105. After five strongly interacting
groups have been identified, additional super-states in the
reduced order model (m > 5) do not significantly decrease
the error bound.

B. Building example

We consider a grid-based model [16] of an agent
movement in a large building as shown in Fig. 4.
We denote the successive locations of the agent by
{X(0),X(1), . . . ,X(t)}. N = {1, 2, . . . , n} denote the cells
in the building that can be occupied by the agent (n = 255
for the building considered here). We use a sub-stochastic
matrix P to denote its Markovian transition probabilities:
For a special nodee, called theexit node, we havePej = 0
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Fig. 6. Depicts (a)4-aggregation, (b)9-aggregation, and (c)16-aggregation of the building plane by using the initial distribution ν0.

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 5. Depicts the pseudo-stationary distribution1
‖π̂‖

π̂, whereπ̂ = ν0(I−

P )−1 andν0 ∈ P(N ) denotes the initial distribution.

for all j ∈ N . The agent leaves the building via the exit
node. For all other nodesi, it is assumed thatPi · is an
honest probability measure: An agent at nodei will move
according to this distribution. If

∑

j Pij < 1, then the agent
leaves the building from nodei with probability(1−

∑

j Pij).
Finally, it is assumed that each node is transient in the sense
that the agent eventually exits the building. This assumption
is expressed by requiring the matrixP to be transient.

Even though, we only present results for stationary
Markov chains, similar generalization also applies to the
transient case where K-L divergence rate is replaced by K-
L divergence, and stationary distribution is replaced by the
pseudo-stationary distribution1

‖π̂‖ π̂, whereπ̂ = ν0(I−P )−1

and ν0 ∈ P(N ) denotes the initial distribution. Intuitively,
1

‖π̂‖ π̂i denotes the fraction of the expected time spent in the
ith node before the agent exits the building.

For a transient Markov chain, one requires the knowledge
of the initial distribution ν0 regarding the agent starting
location x0. It is used to obtain the pseudo-stationary dis-
tribution 1

‖π̂‖ π̂ as depicted in Fig. 5. Fig. 6 summarizes
the aggregations obtained using the recursive algorithm (for
m = 4, 9, 16). We make following two observations:

1) The 1
‖π̂‖ π̂ is supported primarily in left and bottom

corridors (see Fig. 5). As a result, one obtains finer
aggregations of states in these corridors with increasing
values ofm (see Fig. 6).

2) For large values ofm, the groups show non-uniform

aggregation of states even in the same corridor. This
is due to the nature of the assumed agent movement
dynamics. These transition probabilities are obtained
by perturbing the baseline best route of an agent
to the exit. As a result, states inside offices have
small probability of visit and these states are grouped
together into groups with larger number of states.
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metastability in Markovian and molecular systems,”Ann. Appl.
Probab., vol. 14, no. 1, pp. 419–458, 2004.

[5] S. P. Meyn, G. Hagen, G. Mathew, and A. Banasuk, “On complex
spectra and metastability of Markov models,” inProc. of the IEEE
Conf. on Decision & Control, December 2008.

[6] I. Kontoyiannis and S. P. Meyn, “Spectral theory and limittheorems for
geometrically ergodic Markov processes,”Ann. Appl. Probab., vol. 13,
pp. 304–362, 2003, presented at the INFORMS Applied Probability
Conference, NYC, July, 2001.

[7] A. Bovier, M. Eckhoff, V. Gayrard, and M. Klein, “Metastability in
stochastic dynamics of disordered mean-field models,”Probab. Theory
Related Fields, vol. 119, no. 1, pp. 99–161, 2001.

[8] H. A. Simon and A. Ando, “Aggregation of variables in dynamical
systems,”Econometrica, vol. 28, pp. 111–138, 1961.

[9] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 22, no. 8, pp.
888–905, 2000.

[10] R. G. Phillips and P. V. Kokotovic, “A singular perturbation approach
to modeling and control of Markov chains,”IEEE Trans. Automat.
Contr., vol. 26, no. 5, pp. 1087–1094, 1981.

[11] Z. Rached, F. Alalaji, and L. L. Campbell, “The Kullback-Leibler
divergence rate between Markov sources,”IEEE Trans. Info. Thy.,
vol. 50, no. 5, pp. 917–921, 2004.

[12] S. P. Meyn and R. L. Tweedie,Markov Chains and Stochastic
Stability, 2nd ed. London: Springer-Verlag, 1993, online:
http://black.csl.uiuc.edu/˜meyn/pages/book.html .

[13] T. M. Cover and J. A. Thomas,Elements of Information Theory, 1st ed.
New York, NY: John Wiley& Sons, Inc., 1991.

[14] W. Huisinga, “Metastability of markovian systems: A transfer operator
approach in application to molecular dynamics,” Ph.D. dissertation,
Free University Berlin, 2001.

[15] M. Meila and L. Xu, “Multiway cuts and spectral clustering,” May
2003, Technical Report 442.

[16] J. Niedbalski, K. Deng, P. G. Mehta, and S. Meyn, “Model reduction
for reduced order estimation in traffic models,” inProceeding of
American Control Conference, 2008, pp. 914–919.


