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Abstract— This paper is concerned with an information- eigenvector and an assumption on a spectral gap between
theoretic framework to aggregate a large-scale Markov chain the second and the rest of the eigenvalues. Aggregations
to obtain a reduced order Markov model. The Kullback- ot giates within each group can then be justified using a
Leibler (K-L) divergence rate is employed as a metric to . . .
measure the distance between two stationary Markov chains. §|ngular_perturbat|on frfamework (see [10]): o_ver. _the long
Model reduction is obtained by considering an optimization time-period that weak interactions become significant, the
problem with respect to this metric. The solution is just the strongly interacting states within each group can be tceate
optimal aggregated Markov model. We show that the solution as an aggregated super-state.
of the bi-partition problem is given by an eigenvalue problem. A rg|ated notion is that of autthat is used for partitioning
To construct a reduced order model with m super-states, a . .
recursive algorithm is proposed and illustrated with examples. a graph. A symmetric Markov (_:haln may be represented as

an undirected graph where vertices of the graph denotesstate
of the Markov chain and (weights on) edges represent the
I. INTRODUCTION transition probabilities between states. A cut is defined to

An important new tool for understanding multi-scale pheP€ @ certain normalized sum of weights that are removed

nomenon is based on the spectral theory of Markov modelf® obtain a bi-partition (into two groups) of the graph. In
For a stationary Markov chain on a finite dimensionaf€™ms of a minimal cut, the optimal solution for the bi-
state space, the second eigenvalue is precisely the rateP@ftition problem is described by the sign-structure of the
convergence to stationarity. A more recent contribution t§¢cond eigenvector of the Markov transition matrix [9]. The
the spectral theory of Markov models is the use of th&esulting decomposition algorithms have been extensively
second eigenvector (or eigenfunction) to obtain the immit USed in applications including image segmentation, clirge
regarding dynamics, as well as methods for aggregatig'd graph partitioning. _ _ .

in complex models. In dynamical systems settings, this 1he objective of this paper is to examine decomposition,
technique was introduced as a heuristic in [1], [2] to Obtaiﬁggreganon and mod.el reduction issues _for Markov chains
a state-space decomposition based on an analysis of {Reinformation-theoretic terms. The goal is to construct an
Perron cluster of eigenvaludsr the generator of a Markov information-theoretic basis for both interpreting classiand
process. The technique has been applied in diverse setting¥re recent spectral methods, and deriving new error bounds
[1] considers analysis of the nonlinear chaotic dynamics ¢ind algorithms for model reduction of Markov chains. In
Chua’s circuit model, [2] concerns molecular models an@articular, we seek to explain the significance of the second
[3] treats transport phenomena in building systems. In ea@igenvector in these terms.

of these papers, it is shown through numerical examples thatTh€ consideration of this paper rests on the use of

the associated eigenvectors carry significant informatien Kullback-Leibler divergence rate metric fostationary
garding dynamics. In particular, its sign-structure canged Markov chains [11]. With K-L metric, the model reduction

to obtain the partition information for defining super-stat Problem is expressed as an optimization problem. Taking
Theory to support this aggregation technique is containd-Partition problem as an example, the solution is shown
in [4], [5], based on a change of measure similar to what {& P& given by the sign-structure of the second eigenvector
used to establish large deviations asymptotically, folayv consistent with the spectral theory_of Markov models. To
[6]. These results may be regarded as an extension to thenstruct a reduced order model with super-states, a re-
classical Wentzell-Freidlin theory [7]. cursive algorithm is proposed and illustrated with exarsple
The spectral method has close connections to both the 1€ remainder of this paper is organized as follows: In
classical notion ohearly completely decomposabarkoy ~ Section Il, we define the metric used to compare Markov
chain (NCDMC) [8] and the notion ofut in spectral graph chains. In Se_c'uon II_I, we pose an optimization prob_Ie.m vylth
theory [9]. For an NCDMC, the state space can be naturalf)‘?SpECt to th|§ metric and desc;nbe the results for bi-jamti
divided into groups with strong interactions within each ¢@se- In Section IV, we describe several examples.
group and weak interactions among different groups. Such a 1. METRIC

decomposition is consistent with sign-structure of theoedc A. Preliminaries and notations
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denoted asX (¢), the initial condition X (0) is denoted as
xo € N, vg € P(N) is used to denote the probability distri-
bution of the initial conditionzy. The transition probability
between states is described by:a n stochastic matrixP
whosei;j™ entry is given by

P =ProdX(t+1)=j|X(t)=1), ij eN. Q)

A Markov chain is said to bstationaryif it has a unique
stationary distributionr such that

)

where; > 0 for all i € M. We use the tuplg, P)
to denote a stationary Markov chaiR with stationary
distribution .

T =P,

B. K-L divergence rate for Markov chains ow

For two stationary Markov chaingr, P) and (6, Q) de-
fined on the same state spabk the K-L divergence rate is
given by the following formula (see [11]):

i )

P;

RPIQ = X mryton (2
i,jEN Y

To ensureR(P || Q) is finite, we requireP to beabsolutely

continuousw.r.t. @, i.e.@Q;; = 0= P;; =0.

®)

C. K-L divergence rate for Markov chains on different state

spaces

In this paper, we are interested in comparing two Markov

chains P and @ defined onA and M respectively. The
relationship betweerV” and M is described by a partition
function ¢.

Definition 1 (partition function) Let N' = {1,2,...,n}
and M = {1,2,...,m} be two finite dimensional state
spaces withm < n. A partition functiong : N' — M is
a surjective function frordV" onto M. For k € M, ¢~ (k)
denotes the™ group in V.

Since we already have a formula for comparing two
Markov chains on the same state space (see (3)), the strategy

is to use the partition function to lift the Markov chain@
to the original state spac#’. The lifted Markov chain is
denoted ag).

Definition 2 (u-lifting of Q) Let ¢ be a partition function
on A and i be a probability measure oP(N). Let M
denote the range ap and @) be a Markov transition matrix
on M. Thenu-lifting of @ with the partition functiony is
a Markov matrix on\ defined as

QW (¢) = Quiroy, HiEN (4

Zk@b(] 1223

wherey)(j) = ¢~ ! o ¢(j) C N denotes the set of states
belonging to the same group as tli# state.

Definition 3 Let (7, P) denote a stationary Markov chain
on N and (,Q) a Markov chain onM. Then

RO(P | Q) (5)

A A
2 R(P (1)

i (P [ Q% (9)),
where Q(®)(¢) denotes the:-liting of Q with the partition
function ¢.

Theorem 1 Suppose that(w, P) is a stationary Markov
chain on N, ¢ is a partition function with rangeM with
m < n, and (0,Q) is a stationary Markov chain on\.
Then, there is a unique matriQ(“")(¢) that achieves the
minimum in(5). The optimizeru* can be taken to be the
stationary distribution ofP:

7 € argmin R(P || QW (¢)).
HEP(N)

(6)

Note that the theorem does not say tpétis unique. A
probability measurg: minimizes (5) if and only if there
exists constant$K;, [ € M} satisfying

5K, VieT),
K

leM. @)

(P Q) =
Qo()s()

The corresponding matrixQ(*)(¢) then coincides with
Q™ (9).
Proof of Theorem 10n denoting,
anﬂg( ) ®)
i,jEN
the K-L divergence rate (3) betwedm, P) and the lifted
Markov chain(d(¢), Q) (¢)) is expressed as

R Py
R(P || QW()) = Z m; P lo ( )
i,jEN QE?L)(QZ))
s(P [l Q) — miPijlog =—————
7];/\/' Ekew (9)
= Ry(P || Q) mjlog =————
BP1Q)- 3 mlog o
term (i)
term (ii)

where we used the fact that = >, _\, m: P;; (see (2)).

In (9), term (i) is independent of the probability measure
and term (ii) is independent of the Markov transition magsic
P and @. Thus, we only need to consider the term (ii) of
R(P || Q) (¢)) to find the optimaly € P(N). Using (9)
and setting = ¢(j), we have

R(P || Q™ (¢)) — R(P | Q" (9))
_ T, .
= Z Z i) log 7Zk€¢ HONL Z j 10g27
leEM kep=1(1) 2orep () JEN Hi
< Zﬂjlog— - Zmlog—
JEN i JEN

The definition of the K-L divergence rate is extended tavhere thelog sum inequality(see [13]) is used and the

two chains ondifferent state spacessing the lifted chain:

equality holds if and only if (7) is satisfied.



Thus R(P || Q™ (¢)) < R(P || QW (¢)) for all x € where{)\,, & € N’} are Lagrange multipliers. Applying
P(N). Note that the optimal choice of probability measurd.emma 2, we have
is not unique andg: = 7 is one of the optimal choice which
minimizes R(P || Q™) (¢)). m L[=R(PQ)~ + > (D Qu—1). (17)
The formula (9) in the proof of Theorem 1 will also kem  leM
be useful in obtaining further results. For this purpose, we On taking the derivative with respect @,
summarize the formula for the cage= 7 in the following:

oL 0
Lemma 2 Under the assumptions of Theorem 1, 90n _90m <R¢ (Pl + > M Qu-1) )
. kEM  leM
R(P H Q(ﬂ) ((ZS)) = R¢(P || Q) - S(Wa ¢)> (10) . Zi€¢_l(k) Zj€¢_1(l) WiPij + )\
whereR¢ is defined in(8), and - Qui b (8
Z mjlog =———. (11) Setting the right hand side of (18) equal to zero, we have
JEN Eke/’(] Z Z p
ich—1(k ch—1(1) Tily
IIl. OPTIMIZATION PROBLEM Qr = iedT (k) £45eé7 (D) ! k,le M. (19

Ak ’

The Lagrange multiplierg )\, & € N} are obtained by
using the constraints

A. Problem statement

Let (7, P) be a given stationary Markov chain @i. The
m-partition problem is to find the partition functionp :

N — M and the optimal aggregated Markov chdth Q) Do 2uicg=1(k) Ti
such thatR(®) (P || Q) is minimized: 1=) Qu= A > Py,
leM JEN
min RO(P | Q) . —
*,Q (12) where we used the fact that : N — M is a surjective
st Yiem@u=1 keM function, so
le Z 07 k7l € M Z Z Z
R P = P;
(¢) — (m) ; : ij ij-
whereR\?) (P || Q) = R(P || Q'™ (¢)) and constraints arise M e ey

due to the stochastic property of Markov transition matrix.
The optimization problem (12) is mixed-integer nonlin- Now, noting thatP is a stochastic matrix, we have
ear program In general, it is intractable for Markov chains

with large state spaces. 1= Z’e")}\w = A\ = Z . (20)
B. Optimal solution ofQ g i€d= (k)
It turns out that the main difficulty in solving (12) is in  Finally, substituting (20) into (19), we get
finding the optimal partition function. The following then 5 5 ey
shows that for a fixed (say an optimal) partition function Qi) = i€¢ (k) 2ojep=t() T Yo kileM
the solution of@ that solves (12) can be easily obtained. Zi@p—l(;@) i

which is just the formula shown in (13). Stationarity of (15)

with respect toQ(¢) follows from a trivial calculation. ®
For a given partition, (13) gives the entries of optimal

Q(¢). We denote it as@(v™M),v@, ..., v(™), where in-

Theorem 3 Let (7, P) be a given Markov chain o)/ and
¢ be a partition function defined oV with the rangeM.
For problem (12), if¢ is fixed, the optimal solution @ is

given by g ) ' .
. o dicator functions{v®), k € M} are defined by partition
Q@) = (TP C kleM (13) function ¢ (see (14)). Using this notation, the-partition
vy problem becomes finding only the partition functiérsuch
wherell = diag(r), v®" is the transpose 06, andv®  that R (P || Qv v, ... U(m))) is minimized:
) i o S
is a 1-by-n row vector whose™ entry is given by mm R ¢)( I Q( ...,v(m))). 21)
RON { 1 if (i) =k, (14) pN—>
! 0 otherwise C. Optimal partition function for the bi-partition problem
The stationary distribution of) is given by In this section, we consider the special case of (21), where
Ou(0) = v m®' | ke M. (15) = | M| = 2. This is referred to as tha-partition problem

In this casep® = 1 — v(M), We denotev = v") and use

Proof: Noting that R(*)(P || Q) is a convex function the notationQ(v) to denoteQ(v), v(®). We refer tov as

with respect toQ), we introduce the Lagrange function for a bi-partition function For a givenv, the optimal solution
the optimization problem (12) Q(v) is a2 x 2 matrix whose entries are obtained using

I = R (9) P || Q Z )\k Z le o 1 (16) Theorem 3.
keM leM



Lemma 4 Let (7, P) be a given Markov chain oV and
¢ be a given bi-partition function defined ox with range
M = {1,2}. The optimal solution of) is given by

s s
Q) = | pw)—a@w  1-26()+a(v) | - (22)
=50 =)

wherev; = l4-1(1)(i), Il = diag(n), a(v) = vIIPv" and
B(v) = vIlv’. The stationary distribution of) is given by

0(v) = [B(v), 1= B(v)]. (23)

Proof: In the notation of Theorem 3;(") = » and
v(®) =1 — v wherel denotes a-by-n row vector with all
ones. Substituting™) andv(? into formula (13), we have

vl P’ vlIP(1—v)’
Q) = | al0firy  a—o)iP1-v) (24)
(1—v)II(1—v)’ (1—v)II(1—v)’

Noting thatvIIP(1 — v)' = (1 — v)IIPv' = B(v) — a(v)
and (1 — v)II(1 — v)’ =1 — B(v), we get entries ofy in
(22). The stationary distribution (23) @ directly follows
from (15) in Theorem 3. [ ]

Using Lemma 4, we can represegtin the optimal form
(22) in terms of bi-partition functiom. Then using Lemma 2,
we can represenk(?) (P || Q(v)) as

RO(P | Q) = (Hi(Q) — Ho(9)) — (Hy(P) — Hy(m)),

term (i)

term (ii)

(25)
where H,y denotes the standard entropy afid is its Marko-
vian analog:

H(Q) = Y 0k()Qu(v)log Q(v),

k,leM

Hy(0) = — > 61(v)log bk (v),
kemM
— Z 7T7;Pij IOgPZ'j,
i,jEN

Hl(P): Ho(’lT):—Zﬂ'iIOgﬂ'i.

iEN

solution, one may consider relaxing integer constraints on
v;. One particular relaxation is to let € R and consider an
optimization problem:

min  F(a(v), B(v)).

v ER
To obtain the solution, we take the derivative of the func-
tion F(a(v), B(v)) with respect tov. Setting the derivative
equal to zero, after some algebraic manipulations, we obtai
the following necessary condition for a minimizet:

(29)

dOé * _ * * * % *
L7 = X (o), BN @), (30)
where (1-8)%(B—a)?
. log G asrar
N(a, B) = £ ((5_5)2 )
log a(1-26+a)

Substituting the formulae fai(v) and 3(v) (see Lemma 4)
into (30), we see that an optimal solutiof of the relaxed
problem (29) solves the following eigenvalue problem:

Pv* = N Iv, (31)
where \* £ M\ (a(v*), B(v*)), and P = IPEPL s 5
symmetric matrix.

As a result, a solution to (29) may be obtained by consid-
ering a generalized eigenvalue problem (31). We denote its
eigenvalues a$l, Ao, ..., A\, } sorted in a decreasing order.
Although we do not give details here, we propose that the
optimal solution to (29) is obtained by setting

A" = max{[Az|, [An]}. (32)

Let u(® denote the associated eigenvector corresponding to
the second largest eigenvalue in magnitude. Usifg, a
sub-optimal partition function to the original problem }28
may be obtained as,

N

1 ifu® >0

. , teN.
0 otherwise ieN

(33)

These formulae are obtained by substituting (22) and (23) Based on these considerations, we conclude that: For a
into (10). Note that term (ii) in (25) is independent of the"€arly completely decomposable Markov chain (NCDMC)

bi-partition functionv. Thus the optimization problem (21) (m, P),

is equivalent to the following problem,

min [Hy(Q(v)) — Ho(0(v))]. (26)

when Ay (P) ~ 1 and |\, (P)| < A2(P), a solution

to the bi-partition problem may be obtained by considering
the sign-structure of the second eigenvector. We note hieat t
solution proposed here is consistent with the results af [4]

Since both@(v) andé(v) can be represented in terms of[5]' [9], [14].

a(v) and 5(v), then we define
F(a, ) = H\(Q) — Ho(0)

=—2(f—a)log(f —a)— (1 -28+a)log(l —25+ a)
—aloga +283log B+ 2(1 — ) log(1 — B)

D. A recursive algorithm to obtaim: partitions

Since the bi-partition problem can be solved by consid-
ering the second eigenvector, we propose a recursive bi-
partition algorithm to obtain a sub-optimal solution foeth
m-partition problem (12). The K-L divergence rate serves

] ) ] o (?7) as the error bound for model reduction and the recursive
We are interested in choosingy that minimizes algorithm is described as follows:
F(afv), f(v)): During them!™-iteration of the algorithm, we assume that
min  F(a(v), B(v)). (28) @ partition with m groups (or super-states) is given. The
vi€{0,1} objective of them!" iteration is to obtain a refinement that
An exact solution of (28) may be obtained by searchingasm + 1 groups. Fori = 1,...,m, we denoteP”) to be

over 2" possibilities for vectow. To obtain an approximate the sub-Markov transition matrix that describes the titéosi
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and proceeds toward the exit by a random walk.

Fig. 2. The graph of the aggregatéestate Markov chain obtained using
the recursive algorithm. states. The color plot suggests that the Markov chain idynear

completely decomposable with five groups.

In the following, we employ the recursive algorithm to
probabilities within thei™ group. Thei™ group is split into  sptain a reduced order model. With — 1. all states are
two sub-groups according to the sign-structure of the Sﬁco%ggregated into a single group aR® (P || Q) = 0.247.
eigenvector forI1?), P(*)) (see (31) and (33)). The spectralThe bi-partition problems, — 2) is solved by considering
split of the i group alone provides a partitiqn of the stateshe sign-structure of the second eigenvector (b p) (
into m-+1 groups. We denote this partition @§), and use it gee (31) and (33)). The resultigstate Markov model has
to evaluate the optimal reduced order mo@é{’ according grror R@®(P || Q®) = 0.176. The recursive algorithm
to (13). From the resultingn possible choices ofn + 1 correctly identifies five groups in the fifth recursion. Fig. 2
partitions, we select the one that minimiz88” (P || Q),  depicts the transition probabilities for the resulted restl
e, , order modelQ®®. Fig. 3 depicts the error bound (K-L

imin = argmin R (P || Q). divergence rate) as a function of the number of aggregated
wetlom} statesm = | M|. The error bound plot shows th&(?) (P ||
The m + 1 super-states correspond to the origimal— 1 Q(™)) decreases rapidly from = 1tom = 5. With m = 5,
super-states from the previous iteration together with tw®(®) (P || Q®)) = 0.105. After five strongly interacting
super-states obtained from the spectral split ofz'mf,asur)er- groups have been identified, additional super-states in the
state. The associated reduced order model is giveRby).  reduced order modeh{ > 5) do not significantly decrease
the error bound.
IV. EXAMPLES AND DISCUSSIONS
In this section, we present some examples to illustrate tfe Building example
theoretical results described in preceding sections. We consider a grid-based model [16] of an agent
o movement in a large building as shown in Fig. 4.
A. Block partitioning example We denote the successive locations of the agent by
The 100-state stationary Markov chain for this example{X (0), X(1),...,X(¢)}. N ={1,2,...,n} denote the cells
is taken from [15]. Fig. 1 depicts the transition probalgt in the building that can be occupied by the agent=(255
for this chain. The cold colors indicate weak interaction$or the building considered here). We use a sub-stochastic
(small transition probabilities), and warm colors ind&at matrix P to denote its Markovian transition probabilities:
strong interactions (large transition probabilities) vibe#n For a special node, called theexit node we haveP,; =0



(@) (b)

Fig. 6.

Fig. 5. Depicts the pseudo-stationary distributiﬁg}rtﬁﬁ, wherer = vo(I—
P)~! andyy € P(N) denotes the initial distribution.

(1]
(2]

(3]

(4]

for all j € M. The agent leaves the building via the exit

node. For all other nodes it is assumed thaf’;. is an
honest probability measure: An agent at nadeill move
according to this distribution. [}, F;; < 1, then the agent
leaves the building from nodewith probability (13, P;;).

Finally, it is assumed that each node is transient in theesens

that the agent eventually exits the building. This assuompti
is expressed by requiring the matrx to be transient.

(7]

Even though, we only present results for stationary
Markov chains, similar generalization also applies to thel8l
transient case where K-L divergence rate is replaced by Kf9]

L divergence, and stationary distribution is replaced by th
pseudo-stationary distributioW}Wﬁ, wherert = vo(I—P)~
and vy € P(N) denotes the initial distribution. Intuitively,

i" node before the agent exits the building.

[20]

7; denotes the fraction of the expected time spent in the

[11]

For a transient Markov chain, one requires the knowledge

of the initial distribution vy regarding the agent starting

location . It is used to obtain the pseudo-stationary dis

tribution ﬁ 7

the aggregations obtained using the recursive algoritiom (f
=4,9, 16) We make following two observations:

1) The —7 is supported primarily in left and bottom

[12]

7 as depicted in Fig. 5. Fig. 6 summarizes|;3

(©)

Depicts (a}t-aggregation, (bp-aggregation, and (c)6-aggregation of the building plane by using the initial dizition vp.

aggregation of states even in the same corridor. This
is due to the nature of the assumed agent movement
dynamics. These transition probabilities are obtained

by perturbing the baseline best route of an agent

to the exit. As a result, states inside offices have

small probability of visit and these states are grouped

together into groups with larger number of states.
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