
Learning in Mean-Field Oscillator Games

Huibing Yin, Prashant G. Mehta, Sean P. Meyn and Uday V. Shanbhag

Abstract— This research concerns a noncooperative dynamic
game with large number of oscillators. The states are inter-
preted as the phase angles for a collection of non-homogeneous
oscillators, and in this way the model may be regarded as an
extension of the classical coupled oscillator model of Kuramoto.

We introduce approximate dynamic programming (ADP)
techniques for learning approximating optimal control laws
for this model. Two types of parameterizations are considered,
each of which is based on analysis of the deterministic PDE
model introduced in our prior research. In an offline setting,
a Galerkin procedure is introduced to choose the optimal
parameters. In an online setting, a steepest descent stochastic
approximation algorithm is proposed. We provide detailed
analysis of the optimal parameter values as well as the Bellman
error with both the Galerkin approximation and the online
algorithm.

Finally, a phase transition result is described for the large
population limit when each oscillator uses the approximately
optimal control law. A critical value of the control cost parame-
ter is identified: Above this value, the oscillators are incoherent;
and below this value (when control is sufficiently cheap) the
oscillators synchronize. These conclusions are illustrated with
results from numerical experiments.

I. INTRODUCTION

Computation of optimal or approximately optimal control
laws in large population of coupled heterogeneous nonlinear
systems is of interest in a number of applications, including
neuroscience, networks, economics, and power markets. In
this paper we introduce methods for approximating optimal
control laws in a model of coupled oscillators. Our approach
draws on the game-theoretic analysis in our recent paper [1].

As in [1], we consider a set of N oscillators, denoted by
N := {1, . . . ,N}. The model for the ith oscillator is:

dθi(t) = (ωi +ui(t))dt +σ dξi(t), (1)

where θi(t) is the phase of the ith oscillator at time t, ui(t)
is the control input, and {ξi(t), i ∈ N } are mutually in-
dependent standard Wiener processes. The frequencies {ωi}
are chosen independently according to a fixed distribution
with density g, which is supported on an interval of the
form Ω = [1− γ,1 + γ] for some γ < 1. One important
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type of control is the Kuramoto control ui = u(Kur)
i (θi, t) :=

−κ
1
N ∑ j 6=i sin(θi−θ j(t)) [2].

We consider a game-theoretic model. Specifically, we
assume that the ith oscillator minimizes its own performance
objective, given the decisions of (competing) oscillators:

η
(POP)
i (ui;u−i) = lim

T→∞

1
T

∫ T

0
E[c(θi;θ−i)+ 1

2 Ru2
i ]ds, (2)

where θ−i = (θ j) j 6=i, c(·) is a cost function, u−i = (u j) j 6=i
and R models the control penalty. The form of the function
c and the value of R are assumed to be common to the entire
population. A Nash equilibrium in control policies is given
by {u∗i } such that u∗i minimizes η

(POP)
i (ui;u∗−i) for i = 1, . . . ,N.

The cost function c is separable, as shown below

c(θi;θ−i) :=
1
N ∑

j 6=i
c•(θi,θ j(t)), (3)

where c• is a non-negative function on R2. In the remainder
of this paper, we assume the following:

Assumption 1.1: The frequency distribution g(ω) is the
uniform distribution on Ω and c•(θ ,ϑ) = 1

2 sin2 ( θ−ϑ

2

)
.

In [1] we derived a deterministic PDE model in the
large population (N → ∞) limit. The modeling approach
follows the seminal work of Huang et. al. [3] and Wein-
traub et. al. [4], and is based on a version of the mean-
field approximation, central to the study of the interacting
particle systems. The solutions of the PDE describe ε-Nash
equilibria for the noncooperative game with a finite number
of oscillators.

The bifurcation analysis of the PDE model reveals a phase
transition depicted in Fig. 1: For R > Rc, the oscillators are
incoherent, and for R < Rc the oscillators synchronize. That
is, the oscillators synchronize when the control is sufficiently
cheap. Qualitatively, such a phase transition is believed to
be important in a number of applications. For example, in
thalamocortical circuits in the brain, transition to synchrony
is associated with diseased brain states such as epilepsy [5].

The focus of this paper is to introduce approximate
dynamic programming (ADP) based methods to synthesize
approximately optimal feedback control laws for the non-
cooperative game. The motivation for this is three-fold: One,
we are interested in a formulation that yields time-invariant
causal feedback control laws for the game as opposed to
the time-dependent distributed control laws that are obtained
from solution of the PDEs. Two, the ADP formulation natu-
rally suggests that each oscillator can learn an approximately
optimal policy using simulation-based methods such as Q-
learning. Learning schemes are important in applications
of interest. Three, we would like to better understand the
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Fig. 1. Bifurcation diagram: Comparison of stability boundary obtained
from the analysis of the PDE model introduced in [1] and from the analysis
of the large population, where each oscillator applies the approximately
optimal control law obtained using the learning algorithm.

relationship between the game theoretic solution described
in [1] and the classical Kuramoto control [2].

Four types of analyses are presented in this paper:
1. Approximate dynamic programming. The key to the
success of many of the learning algorithms is the specifica-
tion of an appropriate parametrization for an approximation
of the value function. The analysis of the PDE solution
reveals that the game theoretic control law closely approxi-
mates the Kuramoto control law. This suggests two types of
parametrizations that we introduce in this paper.
2. Learning algorithm. We focus on a variant of a Q-
learning algorithm [6], in which an approximation of a Q-
function leads to an approximation of the optimal control law.
In an offline setting, a Galerkin procedure is introduced to
choose the optimal parameters. In an online setting, a steepest
descent stochastic approximation algorithm is proposed.
3. Error analysis. A salient feature of this work is that we
provide detailed analysis of both the Galerkin approximation
and the learning algorithm: One, we characterize optimal
parameter values and show them to be consistent. Two, an
estimate of Bellman error is provided.

The final contribution of this paper is grounded in the large
population (infinite-N continuum) limit:
4. Transition from incoherence to synchrony. The goal of
the final analysis is to describe the population behavior if
the local control laws obtained in step 2 are applied to each
oscillator. The bifurcation diagram, depicted in Fig. 1, reveals
a phase transition with two distinct types of population
behavior:
Incoherence The control solution is u∗i ≡ 0, which coincides

with the solution of the game. The Bellman error in this
case is zero.

Synchrony For R < Rc, the population synchronizes. De-
tailed comparison of the average cost with the game
theoretic solution and the ADP solution are provided. The
Bellman error is small if σ2 is large.
The remainder of this paper is organized as follows.

In Sec. II, the main results of our earlier paper [1] are
briefly reviewed. The approximate dynamic programming
framework is introduced in Sec. III, and the two parametriza-
tions described in Sec. IV. The analysis with these two
parametrizations is reported in Sec. V and Sec. VI, respec-

tively. The main conclusions are illustrated with numerical
experiments in Sec. VII.

II. PRELIMINARIES

In this section we briefly summarize the main results of
[1] for the noncooperative game (1) - (2).

A. Mean-field approximation

If N is large, the sum in (3) is expected to be nearly
deterministic when the frequencies {ωi} are independently
sampled according to the density g. The law of large numbers
suggests the approximation of c(ϑ ;θ−i(t)) by c̄(ϑ , t):

c̄(ϑ , t)≈ 1
N ∑

j 6=i
c•(ϑ ,θ j(t)). (4)

For the scalar model (1) with cost c̄(ϑ , t) depending only
on ϑ = θi, the game reduces to independent optimal control
problems. The associated average-cost HJB equation is given
by,

min
ui
{c̄(θ , t)+ 1

2 Ru2
i +Duihi (θ , t)}= η

∗
i , (5)

where Du denotes the controlled generator, defined for C2

functions f via,

Du f = ∂t f +(ωi +u)∂θ f +
σ2

2
∂

2
θθ f ,

where ∂t and ∂θ denote the partial derivative with respect to
t and θ , respectively, and ∂ 2

θθ
denotes the second derivative

with respect to θ . Because the cost is quadratic in ui and the
dynamics are linear in ui, this leads to the nonlinear HJB
equation

∂thi +ω∂θ hi =
1

2R
(∂θ hi)2− c̄(θ , t)+η

∗
i −

σ2

2
∂

2
θθ hi,

and the optimal control law

u∗i =− 1
R

∂θ hi(θi, t). (6)

B. PDE model

The notation in the large population limit is a minor variant
of the N = 1 solution: The relative value function is denoted
by h(θ , t,ω), which is a solution to the HJB equation,

∂th+ω∂θ h =
1

2R
(∂θ h)2− c̄(θ , t)+η

∗− σ2

2
∂

2
θθ h . (7)

The evolution of the population is described through a
Fokker-Planck-Kolmogorov (FPK) equation. For any i and
any t > 0, the density p(·, t,ωi) is intended to approximate
the probability density of the random variable θi(t), evolving
according to the stochastic differential equation (1) with
optimal control law (6). For the population, the density is
denoted by p(θ , t,ω) and the FPK equation is given by

∂t p+∂θ

[(
ω− 1

R
∂θ h
)

p
]

=
σ2

2
∂

2
θθ p.

Finally, the two PDEs are coupled through an integral that
defines the relationship between cost c̄ and density p:

c̄(ϑ , t) =
∫

Ω

∫ 2π

0
c•(ϑ ,θ)p(θ ; t,ω)g(ω)dθ dω. (8)
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Fig. 2. Comparison of the control obtained from solving the PDE model
(7) - (8) and from Kuramoto model.

C. ε-Nash equilibrium

For a finite population, each oscillator is controlled using
the control solution in (6),

uo
i =− 1

R
∂θ h(θ , t,ω)

∣∣∣∣
ω=ωi

.

Thm. 3.3 in [1], repeated below, shows that this control law
is an ε-Nash equilibrium for (2).

Theorem 2.1: The oblivious control {uo
i } is an ε-Nash

equilibrium for (2): For any adapted control ui,

η
(POP)
i (uo

i ;uo
−i)≤ η

(POP)
i (ui;uo

−i)+O(
1√
N

).

D. Analysis of phase transition

means that we can obtain an ε-Nash equilibrium of the
game (1) - (3) by considering the solution of the PDEs (7)
- (8). Two types of solution are described in [1]:
(i) Incoherence solution:

p(θ , t,ω) = p0(θ) :=
1

2π
, h(θ , t,ω) = h0(θ) := 0 ,

with associated control law u(t)≡ 0.
(ii) Synchrony solution: The traveling wave equation,

p(θ , t,ω) = p(θ − t,0,1), h(θ , t,ω) = h(θ − t,0,ω)

The two types of solution can be visualized using a
bifurcation diagram in the (R,γ)-plane (see Fig. 1).

E. Comparison to Kuramoto model

The synchrony solution is obtained via numerical solution
of the coupled PDEs (7) - (8). Fig. 2 depicts the optimal
control laws u∗(θ , t) = − 1

R ∂θ h(θ , t,ω) in relation to the
population density. Also depicted is the Kuramoto control
law u(Kur)

i (θ , t) =− κ

N ∑ j 6=i sin(θ −θ j(t)).
The comparison shows that the optimal control law is

“close to” the Kuramoto control law. This provides motiva-
tion for the ADP architecture described in the next section.

III. APPROXIMATE DYNAMIC PROGRAMMING

In this section we develop methods to construct approx-
imate solutions to the Bellman equation (5). We assume a
mean-field approximation (4), so c(θ ;θ−i(t)) = c̄(θ , t), and
denote

Hi(θ ,ui, t) := c(θ ;θ−i(t))+ 1
2 Ru2

i +Duihi(θ , t). (9)

Assumption 3.1: The functions hi(θ , t) and c̄(θ , t) are
periodic functions of time, with a common period.

Define
H i(θ , t) := min

ui
{Hi(θ ,ui, t)}.

In this notation, the nonlinear HJB equation (5) is simply
given by

H i(θ , t) = η
∗
i = constant.

As explained in [7], the function Hi defined in (9) is
analogous to the Q-function that arises in the Q-learning
algorithm.

A. Bellman error

The goal of Q-learning is to approximate the Q-function
within a parameterized class:

Hα
i (θ ,u, t) = c(θ ;θ−i(t))+ 1

2 Ru2
i +Duih

α
i (θ , t), α ∈Rd ,

(10)
where hα

i (θ , t) will be constructed in a separable form, as
shown below:

hα
i (θ , t) =

1
N ∑

j 6=i
Gα(θ ,θ j(t)).

Note that the term on the right hand side is a stochastic
function, while hα

i (θ , t) is a deterministic function. This is
justified for large N using a mean-field approximation.

Our goal is to choose the parameter α so that Hα
i ≈ Hi,

where the approximation is with respect to a specific error
criterion. The quality of the approximation crucially depends
on the choice of the function {Gα}, and N being large.

On denoting Hα
i (θ , t) := minui Hα

i (θ ,ui, t), the pointwise
error in the DP equation is denoted by

L α(θ , t) := Hα
i (θ , t)−η

α
i ,

where ηα
i is the mean value of the periodic function

Hα
i (θ , t).
Throughout this paper we adopt a Hilbert space setting

for approximation. On letting ‖ · ‖H denote the associated
norm on function space, we define the Bellman error

εBell(α) := 1
2‖L

α‖2
H .

Computation is made possible by choosing the Hilbert
space in terms of ergodic averages. For any real-valued
function F on the product space [0,2π]×R+ we denote,

‖F‖2
H := lim

T→∞

1
T

∫ T

0

∫ 2π

0

(
F(θ , t)

)2 dθ dt

The Hilbert space H is defined to be the set of functions
for which the limit exists and is finite. The associated inner
product is given by

〈F,G〉H = lim
T→∞

1
T

∫ T

0

∫ 2π

0
F(θ , t)G(θ , t)dθ dt.



In the calculations that follow we will require the Fourier
series of a function F ∈H :

[F(·, t))]0 =
1

2π

∫ 2π

θ=0
F(θ , t)dθ ,

[F(·, t)]c =
1

2π

∫ 2π

θ=0
F(θ , t)cos(θ)dθ ,

[F(·, t)]s =
1

2π

∫ 2π

θ=0
F(θ , t)sin(θ)dθ .

B. Galerkin relaxation

Our goal is to choose α∗ ∈Rd so that the Bellman error is
zero, or nearly so. One possible approach to obtain a solution
is to consider a Galerkin relaxation.

Let ϕ(θ , t) = (ϕi(θ , t))T denote a d-dimensional function
on [0,2π]×R+, with entries {ϕi : 1 ≤ i ≤ d} ⊂ H . The
Galerkin relaxation is obtained by setting the projection onto
the associated d-dimensional subspace equal to zero:

〈L α ,ϕi〉H
∣∣∣
α=α∗

= 0. (11)

C. Gradient descent algorithm

One approach to compute α∗ is to minimize the error,

e(α) =
d

∑
i=1
|〈L α ,ϕi〉H |2

Minimization can be accomplished using a gradient or New-
ton iteration, but this would require computation of inner-
products at each stage of the algorithm.

The stochastic approximation algorithm is obtained on
removing the integration: We define the point-wise error by

ẽ(t;α) =
d

∑
i=1

([L α( · , t),ϕi]0)
2 .

The gradient descent algorithm is given by,

dα

dt
=−ε(t)

dẽ(t;α)
dα

,

where ε( ·) is a non-negative gain that satisfies the standard
conditions,

ε(t) > 0,
∫

∞

0
ε

2(t) dt < ∞,
∫

∞

0
ε(t) dt = ∞. (12)

Although formulated in a straight forward way, the steps
are often challenging to analyze and apply in nonlinear non-
convex settings. The objective of the remainder of the paper
thus is to choose the basis functions gained via analysis of
PDEs (7) - (8) to define parametrization that are easily used
and theoretically justifiable.

IV. PARAMETRIZATION

We begin by recalling the results of numerical experiments
(see Fig. 2) where we showed the game-theoretic optimal
control law (6),

ui(θ , t) =− 1
R

∂θ h(θ , t)

closely approximates the Kuramoto control law

u(Kur)
i (θ , t) =−κ

1
N ∑

j 6=i
sin(θ −θ j(t)).

We use this analogy to consider two basis functions

S(φ)(θ ,θ−i(t)) :=
1
N ∑

j 6=i
sin(θ −θ j(t)−φ),

C(φ)(θ ,θ−i(t)) :=
1
N ∑

j 6=i
cos(θ −θ j(t)−φ),

where φ is a phase variable.
Inspired by the Kuramoto law, we consider the following

parameterized approximation of hi:

hA,φ
i (θ , t)=−AC(φ)(θ ,θ−i(t))=−A

1
N ∑

j 6=i
cos(θ−θ j(t)−φ).

(13)
Note the notation requires a mean-field approximation, which
we assume. Before presenting the approximation of the Q-
function, we make one additional assumption:

Assumption 4.1: The function hA,φ
i (θ , t) = h̃A,φ

i (θ − t).
This assumption is motivated by the game theoretic so-

lution (see Sec. II-D) where the synchrony solution is a
traveling wave. The assumption is useful because it implies
that

∂th
A,φ
i +∂θ hA,φ

i = 0,

which serves to simplify the notation for the parameterized
Q-function.

On substituting (13) in (10), we obtain a two dimensional
parameterization with α i = (Ai,φ):

(P2)

Hα i

i (θ ,ui, t)

= c(θ ;θ−i(t))+(ωi−1+ui)AiS(φ)(θ ,θ−i(t))

+ 1
2 Ru2

i +
σ2

2
AiC(φ)(θ ,θ−i(t)).

The phase φ for game-theoretic control law is seen to
depend upon the frequency ω (See Fig. 2) with φ(1) = 0,
φ(ω) > 0 for ω < 1 and φ(ω) < 0 for ω > 1.

The Kuramoto law on the other hand has phase φ(ω)≡ 0
and the control law is homogeneous for the population. This
leads us to a simpler one-dimensional parametrization with
α i = Ai, hA

i (θ , t) =−AC(0)(θ ,θ−i(t)) and the Q-function:

(P1)

Hα i

i (θ ,ui, t)

= c(θ ;θ−i(t))+ 1
2 Ru2

i +uiAiS(0)(θ ,θ−i(t))

+
σ2

2
AiC(0)(θ ,θ−i(t)).

One can interpret parametrization (P2) as the case where
the oscillator knows its own frequency ωi and (P1) as a
simpler parametrization where frequency ωi is not known.

In the following sections we present analysis and simula-
tion results for these two parameterizations. We begin with
the two-parameter case (P2).



V. ANALYSIS OF PARAMETRIZATION (P2)

On denoting Hα i

i = minui{Hα i

i }, we have

Hα i

i (θ , t) = c(θ ;θ−i(t))−
1

2R

(
AiS(φi)(θ ,θ−i(t))

)2

+(ωi−1)AiS(φi)(θ ,θ−i(t))+
σ2

2
AiC(φi)(θ ,θ−i(t)).

The goal is to choose the parameters (Ai,φi) so that

Hα i

i (θ , t) = constant.

This may not be feasible, so instead we consider the Galerkin
relaxation.

A. Galerkin relaxation

For the projection (11), we select the two functions as

ϕ1(θ , t) = sin(θ − t) , ϕ2(θ , t) = cos(θ − t). (14)

The choice is motivated by the traveling wave solution
observed in the synchrony. With this choice, simple trigono-
metric identities lead to the following representations for the
projections:

〈L α i
,ϕ1〉H = lim

T→∞

1
T

∫ T

0
L α i

s (t)cos(t)−L α i

c (t)sin(t)dt,

〈L α i
,ϕ2〉H = lim

T→∞

1
T

∫ T

0
L α i

c (t)cos(t)+L α i

s (t)sin(t)dt,
(15)

in which

L α i

s := [L α i
( · , t)]s = (ωi−1)Aiψ̄

c +
σ2

2
Aiψ̄

s− 1
4

ψ
s,

L α i

c := [L α i
( · , t)]c =−(ωi−1)Aiψ̄

s +
σ2

2
Aiψ̄

c− 1
4

ψ
c,

(16)
where ψ̄s, ψ̄c, ψs, ψc are functions of the entire population:

ψ̄
c :=

1
N ∑

j 6=i
cos(θ j(t)+φi), ψ̄

s :=
1
N ∑

j 6=i
sin(θ j(t)+φi),

ψ
c :=

1
N ∑

j 6=i
cos(θ j(t)), ψ

s :=
1
N ∑

j 6=i
sin(θ j(t)).

(17)
To obtain an approximate analysis we identify two ideal-

ized models of behavior associated with the infinite popula-
tion limit:

1. Incoherence solution where the population density is
p(θ , t,ω) = 1

2π
. So ψ̄c = 1

N ∑ j 6=i cos(θ j(t) + φi) ≈
1

2π

∫ 2π

0 cos(θ + φi)dθ = 0, and similarly ψ̄s ≈ 0, ψc ≈
0, ψs ≈ 0.

2. Synchrony solution where the population density
p(θ , t,ω) ≈ δ (θ − t). So ψ̄c =

∫ 2π

0 cos(θ + φi)δ (θ −
t)dθ ≈ cos(t +φi). Similarly, expressions can be obtained
for ψ̄s, ψc, and ψs. These are summarized in Tab. I.

Using these as approximations for the behavior with finite
N we obtain approximations for the solution of the Galerkin
relaxation. We find that in either case, the approximation

TABLE I
GALERKIN PROJECTION RESULTS

Incoherence Synchrony
ψ̄c 0 cos(t +φi)
ψ̄s 0 sin(t +φi)
ψc 0 cos(t)
ψs 0 sin(t)

〈L α i
,ϕ1〉H 0 Ai

[
(ωi−1)cosφi + 1

2 σ2 sinφi
]

〈L α i
,ϕ2〉H 0 Ai

[
−(ωi−1)sinφi + 1

2 σ2 cosφi
]
− 1

4

yields a Galerkin parameter α i∗ for which the corresponding
control law is given by,

uα i∗
i (θi, t) =−A∗i

R
1
N ∑

j 6=i
sin(θi−θ j(t)−φ

∗
i ). (18)

Theorem 5.1: Consider the two-parameter parametrization
(P2) combined with the Galerkin basis functions (14). We
have the following conclusions for the infinite-population
approximate model:
(1) Incoherence: If the population is in incoherence, then

the optimal control law is identically zero (uα i

i (·, t) =
0, ∀ t), which coincides with (18) in the infinite popu-
lation limit under incoherence. The average cost is ηα i

i =
1/4, and the pointwise Bellman error is identically zero,
L α i

(θ , t) = 0. This solution is obtained for an arbitrary
value of α i = (Ai,φi).

(2) Synchrony: If the population is in synchrony, then the
optimal value of the parameter α i∗ = (A∗i ,φ

∗
i ) is,

A∗i =
1

4
√

(ωi−1)2 +(σ2

2 )2
, φ
∗
i =− tan−1

(
2(ωi−1)

σ2

)
.

(19)

The resulting control law (18) results in the average cost
ηα i∗

i = 1
4 − ε(R,ωi), and the pointwise Bellman error

L α i
(θ , t) = ε(R,ωi)cos2(θ − t−φ

∗
i ),

where

ε(R,ωi) =
1

64R[(ωi−1)2 +σ4/4]
.

Proof: The formulae are obtained by setting the projec-
tions in (15) equal to zero, where (16)-(17) are used together
with expressions in Tab. I.

We remark that the pointwise Bellman error is zero in
the incoherence regime because the parametrization recovers
the optimal control u∗i ≡ 0, for any values of the parameters
(Ai,φi).

In the following section we analyze the infinite-N limit
population behavior with the Galerkin-based control (18).

B. Analysis of phase transition with Galerkin solution
Using the Galerkin-based control (18), the closed-loop

system is given

dθi(t) =

[
ωi−

A∗i
RN ∑

j 6=i
sin(θi−θ j(t)−φ

∗
i )

]
dt +σ dξi(t).

(20)



Our interest is to characterize the behavior of the infinite-
N limit (see e.g., [8]). The limiting FPK equation for the
density is given by

∂t p+∂θ [pv] =
σ2

2
∂

2
θθ p, (21)

where the velocity v(θ , t,ω) is given by

v(θ , t,ω) = ω− A∗(ω)
R

∫
Ω

∫ 2π

0
sin(θ −ϑ −φ

∗(υ))

p(ϑ , t,υ)g(υ)dϑ dυ ,

where A∗(ω) = 1

4
√

(ω−1)2+( σ2
2 )2

, φ ∗(ω) =− tan−1( 2(ω−1)
σ2 ).

The FPK equation (21) has an incoherence solution
p0(θ , t,ω) = 1

2π
for all θ , t and ω . We investigate stability

and possible bifurcation by taking a linearization of (21)
about the incoherence solution p0. A perturbation of the
solution is denoted p = p0 + p̃. Since p = p0 + p̃ is a prob-
ability density, the perturbation satisfies the normalization
condition

∫ 2π

0 p̃(θ , t,ω)dθ = 0 for any t, ω . When p̃ is small,
its evolution is approximated by the linear equation,

∂t p̃ =−ω∂θ p̃+
1

2π
∂θ ṽ+

σ2

2
∂

2
θθ p̃ =: LR p̃ (22)

where

ṽ =
A∗(ω)

R

∫
Ω

∫ 2π

0
sin(θ −ϑ −φ

∗(υ))p̃(ϑ , t,υ)g(υ)dϑ dυ .

The following theorem describes the spectrum of the linear
operator LR:

Theorem 5.2: The discrete spectrum of operator LR :
L2([0,2π])→ L2([0,2π]) is the set

Sd :=

{
λ ∈ C

∣∣∣ 1 =
1

2R

∫
Ω

e∓iφ∗(ω)

λ + σ2

2 ± iω
A∗(ω)g(ω)dω

}
,

where A∗(ω) = 1

4
√

(ω−1)2+( σ2
2 )2

, φ ∗(ω) = − tan−1( 2(ω−1)
σ2 ).

Furthermore, the continuous spectrum contains the set

Sc :=
{

λ ∈ C
∣∣∣λ =−σ2

2
k2− kωi, ω ∈Ω, k =±1,±2, . . .

}
.

Proof: The eigenvalue calculation is straightforward.
The proof of the continuous spectrum is omitted. It is similar
to the proof of a corresponding result (Theorem 4.1) in [1].

If the noise is not zero, i.e., σ 6= 0, then the continuous
spectrum is always in the strict left half plane. Hence stability
of (22) is solely determined by the discrete spectrum Sd .
Analysis of discrete spectrum as a function of R and γ allows
us to obtain the phase transition boundary for the closed-loop
system (20) in the infinite-N limit.

Theorem 5.3: Consider the closed-loop system (20) where
A∗i , φ ∗i are defined in (19). Suppose ωi is sampled from
uniform distribution on Ω := [1− γ,1+ γ]. Define

Rc(γ) =

{
1

2σ4 if γ = 0,
1

4σ2γ
tan−1

(
2γ

σ2

)
if γ > 0.

(23)
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Fig. 3. Comparison of Rc(γ) defined in (23), and the stability boundary
obtained using the PDE model in [1].

Then in the infinite-N limit: For R > Rc(γ), the system is
in incoherence, and for R < Rc(γ), the incoherence solution
loses stability, via a Hopf bifurcation, to synchrony.

Proof: The stability boundary is obtained by setting
the real part of the eigenvalue (in set Sd) equal to zero. The
Hopf bifurcation result is verified using certain transversality
conditions [9]. These calculations are omitted here on ac-
count of space. We provide a numerical verification instead
in Sec. VII.

We plot the critical value Rc from (23) in the R− γ plane
with 3 different noise levels, i.e., σ2 = 0.1, 0.2, 0.3. The
results are labeled as “Learning” in Fig. 3. We also depict
the critical value Rc obtained from game-theoretic model
(labeled as “PDE”) in the figure. The plots show that the
two match extremely well.

C. Stochastic approximation algorithm

We now introduce a stochastic approximation procedure
to compute α i∗ = (A∗i ,φ

∗
i ). For a given approximation α =

(Ai,φi) we define the error via

ẽ(t;α) = ([L α( · , t),ϕ1]0)
2 +([L α( · , t),ϕ2]0)

2 . (24)

Estimates {Ai(t), φi(t)} are specified according to the gradi-
ent descent algorithm,

dAi(t)
dt

=−ε(t)
dẽ
dAi

(t;α(t)),
dφi(t)

dt
=−ε(t)

dẽ
dφi

(t;α(t)),

(25)

in which ε(t) > 0 satisfy (12), and the derivatives are
obtained using (24):

dẽ
dAi

= 2Ai

(
(ωi−1)2 +(

σ2

2
)2
)(

(ψ̄s)2 +(ψ̄c)2)
+

1
2

[
(ωi−1)(ψ̄s

ψ
c− ψ̄

c
ψ

s)− σ2

2
(ψ̄s

ψ
s + ψ̄

c
ψ

c)
]
,

dẽ
dφi

=
Ai

2

[
(ωi−1)(ψ̄s

ψ
s + ψ̄

c
ψ

c)+
σ2

2
(ψ̄s

ψ
c− ψ̄

c
ψ

s)
]
,

(26)

where ψ̄s, ψ̄c, ψs, ψc are defined as before in (16).
In application of this algorithm we simulate a finite

population model. A value of i between 1 and N is selected,
and the ith oscillator uses the control uα i

i given in (18). The



remaining oscillators apply the Kuramoto control law. The
resulting dynamical equations are given by,

dθ j =

(
ω j−

κ

N ∑
6̀= j

sin(θ j−θ`)

)
dt +σ dξ j(t), j 6= i

(27)

dθi =
(

ωi−
Ai(t)

R
S(φi(t))(θ ,θ−i(t))

)
dt +σ dξi(t), (28)

in which {ξk(t), k ∈N } denote independent Wiener process
with instantaneous variance 1.

Theorem 5.4 describes possible equilibria of the algorithm
in the two idealized solution regimes for the population (see
Sec. V-A):

Theorem 5.4: Consider the system (27)-(28), where the
ith-oscillator updates its parameters Ai(t),φ(t) according to
the algorithm (25)-(26). In the infinite-N limit, we have the
following conclusions:
(1) If the population {θ j(t)} j 6=i is in incoherence, dẽ/dAi =

dẽ/dφi = 0. So any α i =(Ai,φi) is an equilibrium solution.
(2) If the population {θ j(t)} j 6=i is in synchrony, the equi-

librium is given by Ai = A∗i , φi = φ ∗i , where A∗i , φ ∗i are
defined in (19).

Proof: The formulae are obtained by setting the right
hand side of (26) equal to zero, where expressions in Tab. I
are used in the two idealized population regimes.

For the infinite-N idealized models of population behavior,
the right hand side of (26) do not explicitly depend upon
time. Analysis of equilibria thus is straightforward. For the
finite-N case, this is not true. Here, convergence of the
stochastic algorithm will require analysis of the averaged
ODEs [10]. This is a subject of future work.

We now describe some numerical results for the stochastic
approximation algorithm (25). In each simulation the popu-
lation consisted of N = 200 oscillators. For the distinguished
value i, the frequency of the ith oscillator was taken to be
ωi = 1.1. The remaining N−1 frequencies were sampled in-
dependently from the uniform distribution on Ω = [0.9,1.1].
The parameters Ai and φi are updated according to (25) in
the following two cases:
(1) κ = 0.01: Population is in incoherence.
(2) κ = 1: Population is in synchrony.

Fig. 4 depicts Ai(t) and φi(t) in the two cases. Given
the conclusions of Thm. 5.4 it may be surprising to see
that the algorithm is consistent in the incoherence regime.
The explanation is that ψ̄s = ψ̄c = ψs = ψc = 0 in the
incoherence regime only in the limiting case as N→∞. For
finite N, the terms are only approximately zero, so there is
sufficient information for the ith oscillator to learn the optimal
values. In the synchronous regime the parameters converge
quickly to the optimal values predicted by Theorem 5.4. In
the incoherence regime, the convergence is expected to get
progressively slower as N increases.

The form of Kuramoto control law for the population is not
particularly important, except that it allows us to make the
point about the influence of the population on learning. The
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Fig. 4. Learning simulation: Parametrization (P2).

results of this section are robust: For instance, if we changed
the control law of the jth oscillator in the population to

u j =−
A∗j
R

S(φ∗j )(θ j;θ− j).

Such a choice will be consistent with the Galerkin-based
control law with parametrization (P2).

VI. ANALYSIS OF PARAMETRIZATION (P1)

The analysis of one-dimensional parameterization is con-
ceptually no different. We summarize the main conclusions:
1. The Galerkin-based control, counterpart of (18), is:

uα i∗
i (θi, t) =−A∗i

R
1
N ∑

j 6=i
sin(θi−θ j(t)), (29)

where A∗i = 1
2σ2 . Note (29) is the Kuramoto control law.

2. The parameter value A∗i can be computed in an online
fashion by using a gradient descent algorithm

dAi

dt
=−ε

dẽ
dAi

,

dẽ
dAi

=
(

Ai
σ4

2
− σ2

4

)(
(ψs)2 +(ψc)2) ,

where ψs, ψc are defined in (16).

VII. COMPARISON OF GALERKIN AND PDE RESULTS

Recall the optimal control (6) is u∗(θ , t;ω) =
− 1

R ∂θ h∗(θ , t,ω). It is obtained as a numerical solution
of the coupled PDEs (7)-(8) (see [1] for details on
the numerical algorithm). The Galerkin control (18) is
uα i∗

i (θ , t;ωi) =−A∗i
R

1
N ∑ j 6=i sin(θ −θ j(t)−φ ∗i ), where A∗i , φ ∗i

are defined in (19). In the experiments described here we
have taken N = 200 oscillators, whose frequencies are
sampled from a uniform distribution on Ω = [0.9,1.1].

Figure 5 provides a comparison of the two control laws,
plotted as a function of ω , using R = 9, and two values of
the variance σ2 = 0.1 and 0.2. The Galerkin-based control
law (18) qualitatively captures the main features of the
optimal control (6):
1. The Galerkin-based control leads to synchronization of

the population for values of R smaller than the critical
value Rc. In synchrony, the population density is a trav-
eling wave with wave speed 1. This justifies, a posteriori,
the Assumption 4.1.

2. The control is zero when ω = 1, and θ lies at its mean
value (equal to π in this figure, for the particular value
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Fig. 6. Comparison of the magnitude and the phase of the first harmonic
of the optimal control (u∗(θ , t)) and the Galerkin-based control (uα i∗

i (θi, t)).

of t chosen). At this mean value, the control is positive
(negative) if ω < 1 (ω > 1).

The approximation improves as the variance of the noise σ2

increases. This is qualitatively consistent with the estimate
of the Bellman error given in Theorem 5.1.

For any control u(θ , t), the magnitude and phase of
its first harmonic are computed as

√
([u]c)2 +([u]s)2 and

tan−1([u]c/[u]s)
∣∣
ω=1− tan−1([u]c/[u]s)

∣∣
ω

, respectively. Fig. 6
provides a comparison of the optimal and Galerkin control
laws in terms of these features. Qualitatively, the main dif-
ference is that the Galerkin-based control is more aggressive
(larger magnitude and phase) than the optimal control.

Figure 7 compares the average cost η(ω) as a function
of 1/

√
R, with σ2 = 0.1. When using optimal control, the

data was obtained from a numerical solution of the coupled
PDEs (7)-(8). For R > Rc = 39.1, the average cost is inde-
pendent of frequency, η(ω) = η0 = 1

4 , which is consistent
with the incoherence solution. For R < Rc the average cost
is reduced, and for such R the value of η(ω) < η0 depends
upon the frequency ω . Its minimal value is attained uniquely
when ω = 1, which is the mean frequency under g.

With Galerkin-based control (18), the data was obtained
as before, using a numerical simulation with N = 200 os-
cillators. The figure shows that the approximately optimal
Galerkin-based control law (18) qualitatively captures the
main features of the phase transition:
1. For R > Rc, η(ω)≈ 1

4 and the population is in incoher-
ence. The slightly lower value of the average cost is due
to finite number of oscillators in the simulation.

2. At R = Rc, there is a phase transition as predicted by
Theorem 5.3. For R < Rc the value of η(ω) < η0 depends
upon the frequency ω . Its minimal value is attained
uniquely when ω = 1.
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Fig. 7. Bifurcation diagram: the average cost as a function of 1√
R

.

Consistent with the approximate formulation, the average
cost is expected to be larger with the Galerkin-based control.
This is indeed the case when R is much larger than Rc. For
values of R ≈ Rc, there are slight discrepancies. These are
numerical artifacts because of the sensitive nature of the PDE
solution in the vicinity of the bifurcation point, and because
of the finite number of oscillators used in simulating the
Galerkin-based control law.
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