
Contents

Control Techniques for Complex Networks

11.5 Estimating a value function1

2
Approximate Dynamic Programming using

with Applications to Power Management

3 Q-Learning
and Pontryagin's Minimum Principle

https://netfiles.uiuc.edu/meyn/www/spm_files/CTCN/CTCN.html

11.5 Estimating a value function

Control Techniques for Complex Networks 516

11.5 Estimating a value function

Value functions have appeared in a surprising range of contexts in this book.

(i) The usual home for value functions is within the field of optimization. In the set-
ting of this book, this means MDPs. Chapter 9 provides many examples, following
the introduction for the single server queue presented in Chapter 3.

(ii) The stability theory for Markov chains and networks in this book is centered
around Condition (V3). This is closely related to Poisson’s inequality, which is
itself a generalization of the average-cost value function.

(iii) Theorem 8.4.1 contains general conditions ensuring that the h-MaxWeight policy
is stabilizing. The essence of the proof is that the function h is an approximation
to Poisson’s equation under the assumptions of the theorem.

(iv) We have just seen how approximate solutions to Poisson’s equation can be used to
dramatically accelerate simulation.

TD Learning

Notation:

Goal: Find θ minimizing this error

h value function
h approximation
ψ its gradient:

L2 error:
E(θ) = h − hθ 2

π := Eπ[h(X(0)) − hθ(X(0)) 2] (11.61)

θ

θ ψθ(x) := ∇θh
θ (x)

TD Learning

Notation:

Goal: Find θ minimizing this error

Gradient:

Solution for linear parameterization:

h value function
h approximation
ψ its gradient:

L2 error:
E(θ) = h − hθ 2

π := Eπ[h(X(0)) − hθ(X(0)) 2] (11.61)

θ

θ ψθ(x) := ∇θh
θ (x)

∇θ hθ − h 2
π = 2Eπ[(hθ(X) − h(X))ψθ(X)]

θ∗ = M−1
ψ bψ, where Mψ = E[ψ(X)ψ(X)T]

bψ = E[h(X)ψ(X)]

TD Learning for Discounted Cost

Notation:

Solution for linear parameterization:

h value function

θ∗ = M−1
ψ bψ, where Mψ = E[ψ(X)ψ(X)T]

bψ = E[h(X)ψ(X)]

RγRh cγ ==

∞

t=0

(1 + γ)−t−1P t

TD Learning for Discounted Cost

Notation:

Hilbert space notation:

Solution for linear parameterization:

h value function

θ∗ = M−1
ψ bψ, where Mψ = E[ψ(X)ψ(X)T]

bψ = E[h(X)ψ(X)]

RγRh cγ ==

∞

t=0

(1 + γ)−t−1P t

= Rγc ,ψ π

bψ = E[h(X)ψ(X)]

TD Learning for Discounted Cost

Notation:

Hilbert space notation:

Solution for linear parameterization:

h value function

θ∗ = M−1
ψ bψ, where Mψ = E[ψ(X)ψ(X)T]

bψ = E[h(X)ψ(X)]

RγRh cγ ==

∞

t=0

(1 + γ)−t−1P t

= Rγc ,ψ π

bψ = E[h(X)ψ(X)]

Adjoint representation:
= R ψc , πbψ

†
γ

TD Learning for Discounted Cost

Notation:

Hilbert space notation:

Solution for linear parameterization:

h value function

θ∗ = M−1
ψ bψ, where Mψ = E[ψ(X)ψ(X)T]

bψ = E[h(X)ψ(X)]

RγRh cγ ==

∞

t=0

(1 + γ)−t−1P t

= Rγc ,ψ π

bψ = E[h(X)ψ(X)]

Adjoint representation:
= R ψc , πbψ

†
γ

Adjoint: Resolvent for time-reversed process:

R†
γg (x) =

∞

t=0

(1 + γ)−t−1E[g(X(−t)) X(0) = x], x ∈ X

TD Learning for Discounted Cost

ϕ(k) =

k

t=0

(1 + γ)−t−1ψ (X(k − t))

Algorithm:

Elligibility vectors:

Solution for linear parameterization:
θ∗ = M−1

ψ bψ, where Mψ = E[ψ(X)ψ(X)T]

bψ = E[h(X)ψ(X)]

Law of Large Number approximations:

= R ψc , π
†
γ

R†
γg (x) =

∞

t=0

(1 + γ)−t−1E[g(X(−t)) X(0) = x], x ∈ X

bn
ψ =

1

n

n∑

k=1

ϕ(k)c(X(k))

Mn
ψ =

1

n

n∑

k=1

ψ(k)ψ(k)T

TD Learning for Discounted Cost

ϕ(k) =

k

t=0

(1 + γ)−t−1ψ (X(k − t))

Algorithm:

Elligibility vectors:

Solution for linear parameterization:
θ∗ = M−1

ψ bψ, where Mψ = E[ψ(X)ψ(X)T]

bψ = E[h(X)ψ(X)]

Law of Large Number approximations:

Estimate:

Inverse recursively computed

= R ψc , π
†
γ

R†
γg (x) =

∞

t=0

(1 + γ)−t−1E[g(X(−t)) X(0) = x], x ∈ X

bn
ψ =

1

n

n∑

k=1

ϕ(k)c(X(k))

Mn
ψ =

1

n

n∑

k=1

ψ(k)ψ(k)T

θ(n) = [Mn
ψ]−1bn

ψ

Approximate Dynamic Programming using
Fluid and Diffusion Approximations
 with Applications to Power Management

Wei Chen, Dayu Huang, Ankur A. Kulkarni, Jayakrishnan Unnikrishnan, Quanyan Zhu,
Prashant Mehta, Sean Meyn, and Adam Wierman

Coordinated Science Laboratory, UIUC
Dept. of IESE, UIUC
Dept. of CS, California Inst. of Tech.

Speaker: Dayu Huang

National Science Foundation (ECS-0523620 and CCF-0830511),
ITMANET DARPA RK 2006-07284, and Microsoft Research

1

1

2

2

J

xn
0 2 4 6 8 10 12 14 16 18 20

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8 9 10 x 104
−2

−1

0

1

2

3

4

Introduction

MDP model

i.i.d

Control

Cost

Minimize average cost

GeneratorAverage Cost Optimality Equation (ACOE)

Solve ACOE and Find

Relative value function
Generator

Introduction

MDP model

i.i.d

Control

Cost

Minimize average cost

GeneratorAverage Cost Optimality Equation (ACOE)

Solve ACOE and Find

Relative value function
Generator

Introduction

MDP model

i.i.d

Control

Cost

Minimize average cost

GeneratorAverage Cost Optimality Equation (ACOE)

Solve ACOE and Find

Relative value function
Generator

TD Learning

The “curse of dimensionality”:

Approximate within a �nite-dimensional function class

 Criterion: minimize the mean-squre error

solved by stochastic approximation algorithms

Complexity of solving ACOE grows exponentially with
the dimension of the state space.

Problem: How to select the basis functions ?

key to the success of TD learning

TD Learning

The “curse of dimensionality”:

Approximate within a �nite-dimensional function class

 Criterion: minimize the mean-squre error

solved by stochastic approximation algorithms

Complexity of solving ACOE grows exponentially with
the dimension of the state space.

Problem: How to select the basis functions ?

key to the success of TD learning

0 2 4 6 8 10 12 14 16 18 20

20

40

60

80

100

120

Fluid value function

Relative value function

is a tight approximation to

can be used as a part of the basis

Total cost for
an associated deterministic model

Related Work

Veatch 2004
Moallemi, Kumar and Van Roy 2006

Meyn 1997, Meyn 1997b

Hendersen et.al. 2003simulation
network scheduling

and routing

optimal control Chen and Meyn 1999

Meyn 2007

Multiclass queueing network

Control Techniques for
Complex Networks

other approaches
Mannor, Menache and Shimkin 2005
Tsitsiklis and Van Roy 1997

 Taylor series approximation this work

https://netfiles.uiuc.edu/meyn/www/spm_files/CTCN/CTCN.html

Related Work

Veatch 2004
Moallemi, Kumar and Van Roy 2006

Meyn 1997, Meyn 1997b

Hendersen et.al. 2003simulation
network scheduling

and routing

optimal control Chen and Meyn 1999

Meyn 2007

Multiclass queueing network

Control Techniques for
Complex Networks

other approaches
Mannor, Menache and Shimkin 2005
Tsitsiklis and Van Roy 1997

 Taylor series approximation this work

Power Management via Speed Scaling

Single processor

Control the processing speed to balance delay and energy costs

 processing rate
 determined by the current power

Processor design: polynomial cost

We also consider
for wireless communication applications

Bansal, Kimbrel and Pruhs 2007

Wierman, Andrew and Tang 2009

This talk

job arrivals

Kaxiras and Martonosi 2008
Wierman, Andrew and Tang 2009

Mannor, Menache and Shimkin 2005

Total Cost

Fluid Model

Fluid model:

Total Cost Optimality Equation (TCOE) for the �uid model:

MDP

Why Fluid Model?

First order Taylor series approximation

MDP

almost solves the ACOE

TCOE

ACOE

Why Fluid Model?

First order Taylor series approximation

MDP

Simple but
powerful idea!

almost solves the ACOE

TCOE

ACOE

0 2 4 6 8 10 12 14 16 18 20

20

40

60

80

100

120

Fluid value function

Relative value function

is a tight approximation to

can be used as a part of the basis

Total cost for
an associated deterministic modelJ∗

J

x
∗

h∗

J∗

h∗

Policy

0 2 4 6 8 10 12 14 16 18 20
−20

0

20

40

60

80

100

120

140

160

180

Stochastic optimal policy

 myopic policy

Di erence

x

Value Iteration

5 10 15 20
0

50

100

150

200

250

Initialization:

Initialization: V0 0

n

V0 =

(See also [Chen and Meyn 1999])

https://netfiles.uiuc.edu/meyn/www/spm_files/Papers_pdf/vi.pdf

Approximation of the Cost Function

Error Analysis

constant?

Bounds on ?

approximates

Surrogate cost

Approximation of the Cost Function

Error Analysis

constant?

Bounds on ?

Surrogate cost

Structure Results on the Fluid Solution

Lower Bound

Convexity of

Lower Bound

Convexity of

Upper Bound

Upper Bound

Upper Bound

c◦(x,u) − η◦ ≤ c(x,u) ≤ c◦(x,u) + O(
√

x)

TD Learning Experiment

Estimates of Coe�cients for the case of quadratic cost

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

120

Approximate relative value function

Fluid value function

0 1 2 3 4 5 6 7 8 9 10 x 104
−2

−1

0

1

2

3

4

Relative value function

Basis functions:

TD Learning with Policy Improvement

Nearly optimal after just a few iterations

Average cost at stage

0 5 10 15 20 25

2

3

n

Conclusions

The �uid value function can be used as a part of the basis for TD-learning.

Motivated by analysis using Taylor series expansion:

The �uid value function almost solves ACOE. In particular,
it solves the ACOE for a slightly di�erent cost function; and
the error term can be estimated.

TD learning with policy improvement gives a near optimal policy
in a few iterations, as shown by experiments.

Application in power management for processors.

Q-Learning
 and Pontryagin's Minimum Principle

Sean Meyn

Department of Electrical and Computer Engineering
and the Coordinated Science Laboratory
 University of Illinois

Joint work with Prashant Mehta

Research support: NSF: ECS-0523620
 AFOSR: FA9550-09-1-0190

Outline

Example: Local approximation

Step 1: Recognize
Step 2: Find a stab...
Step 3: Optimality
Step 4: Adjoint
Step 5: Interpret

Q-learning for nonlinear state space models

Example: Decentralized control

Outline

Example: Decentralized control

Example: Local approximation

Step 1: Recognize
Step 2: Find a stab...
Step 3: Optimality
Step 4: Adjoint
Step 5: Interpret

Q-learning for nonlinear state space models

What is Q learning?

Desired behavior

Measured behavior

learn
optimal
policy Inputs

Outputs

Complex system

Watkin’s 1992 formulation applied to finite state space MDPsWatkin’s 1992 formulation applied to finite state space MDPs

Identify optimal policy based on observations:Identify optimal policy based on observations:

What is Q learning?
Desired behavior

Measured behavior

learn
optimal
policy Inputs

Outputs

Complex system

Watkin’s 1992 formulation applied to finite state space MDPsWatkin’s 1992 formulation applied to finite state space MDPs

Goal: Find the best approximation to dynamic programming
equations over a parameterized class, based on observations
using a non-optimal policy.

Watkin’s algorithm known to be effective only for
 Finite state-action space
 Complete parametric family

Goal: Find the best approximation to dynamic programming
equations over a parameterized class, based on observations
using a non-optimal policy.

Watkin’s algorithm known to be effective only for
 Finite state-action space
 Complete parametric family

Watkins and P. Dayan, 1992

What is Q learning?
Desired behavior

Measured behavior

learn
optimal
policy Inputs

Outputs

Complex system

Watkin’s 1992 formulation applied to finite state space MDPsWatkin’s 1992 formulation applied to finite state space MDPs

Goal: Find the best approximation to dynamic programming
equations over a parameterized class, based on observations
using a non-optimal policy.

Watkin’s algorithm known to be effective only for
 Finite state-action space
 Complete parametric family

Extensions: when cost depends on control,
 but dynamics are oblivious

Approach: Similar to differential dynamic programming

Goal: Find the best approximation to dynamic programming
equations over a parameterized class, based on observations
using a non-optimal policy.

Watkin’s algorithm known to be effective only for
 Finite state-action space
 Complete parametric family

Extensions: when cost depends on control,
 but dynamics are oblivious

Approach: Similar to differential dynamic programming
Differential dynamic programming
D. H. Jacobson and D. Q. Mayne
American Elsevier Pub. Co. 1970

Watkins and P. Dayan, 1992

Duff, 1995

Tsitsiklis and Van Roy, 1999

Yu and Bertsekas, 2007

What is Q learning?
Desired behavior

Measured behavior

learn
optimal
policy Inputs

Outputs

Complex system

Watkin’s 1992 formulation applied to finite state space MDPsWatkin’s 1992 formulation applied to finite state space MDPs

Deterministic formulation: Nonlinear system on Euclidean space,Deterministic formulation: Nonlinear system on Euclidean space,

This lecture:This lecture:

Infinite-horizon discounted cost criterion,Infinite-horizon discounted cost criterion,

with c a non-negative cost function.with c a non-negative cost function.

d
dtx(t) = f(x(t),u(t)), t≥ 0

J∗(x) = inf
∞

0

e−γsc(x(s),u(s)) ds, x(0) = x

What is Q learning?

−1 0 1
−1

0

1

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Optimal policy

Deterministic formulation: Nonlinear system on Euclidean space,Deterministic formulation: Nonlinear system on Euclidean space,

Infinite-horizon discounted cost criterion,Infinite-horizon discounted cost criterion,

with c a non-negative cost function.with c a non-negative cost function.

Differential generator: For any smooth function h,Differential generator: For any smooth function h,

d
dtx(t) = f(x(t),u(t)), t≥ 0

J∗(x) = inf
∞

0

e−γsc(x(s),u(s)) ds, x(0) = x

Duh (x) := (∇h (x))Tf(x,u)

What is Q learning?

−1 0 1
−1

0

1

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Optimal policy

Deterministic formulation: Nonlinear system on Euclidean space,Deterministic formulation: Nonlinear system on Euclidean space,

Infinite-horizon discounted cost criterion,Infinite-horizon discounted cost criterion,

with c a non-negative cost function.with c a non-negative cost function.

Differential generator: For any smooth function h,Differential generator: For any smooth function h,

d
dtx(t) = f(x(t),u(t)), t≥ 0

J∗(x) = inf
∞

0

e−γsc(x(s),u(s)) ds, x(0) = x

HJB equation:HJB equation: min
u

c(x,u) + DuJ∗ (x) = γJ∗(x)

Duh (x) := (∇h (x))Tf(x,u)

What is Q learning?

−1 0 1
−1

0

1

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Optimal policy

Deterministic formulation: Nonlinear system on Euclidean space,Deterministic formulation: Nonlinear system on Euclidean space,

Infinite-horizon discounted cost criterion,Infinite-horizon discounted cost criterion,

with c a non-negative cost function.with c a non-negative cost function.

The Q-function of Q-learning is this function of two variablesThe Q-function of Q-learning is this function of two variables

Differential generator: For any smooth function h,Differential generator: For any smooth function h,

d
dtx(t) = f(x(t),u(t)), t≥ 0

J∗(x) = inf
∞

0

e−γsc(x(s),u(s)) ds, x(0) = x

HJB equation:HJB equation: min
u

c(x,u) + DuJ∗ (x) = γJ∗(x)

Duh (x) := (∇h (x))Tf(x,u)

Q learning - Steps towards an algorithm

−1 0 1
−1

0

1

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Optimal policy

Sequence of five steps:Sequence of five steps:

Step 1: Recognize fixed point equation for the Q-function
Step 2: Find a stabilizing policy that is ergodic
Step 3: Optimality criterion - minimize Bellman error
Step 4: Adjoint operation
Step 5: Interpret and simulate!

Q learning - Steps towards an algorithm

−1 0 1
−1

0

1

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Optimal policy

Sequence of five steps:Sequence of five steps:

Goal - seek the best approximation,
 within a parameterized class
Goal - seek the best approximation,
 within a parameterized class

Step 1: Recognize fixed point equation for the Q-function
Step 2: Find a stabilizing policy that is ergodic
Step 3: Optimality criterion - minimize Bellman error
Step 4: Adjoint operation
Step 5: Interpret and simulate!

Q learning - Steps towards an algorithm

−1 0 1
−1

0

1

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Optimal policy

Step 1: Recognize �xed point equation for the Q-function
Step 2: Find a stabilizing policy that is ergodic
Step 3: Optimality criterion - minimize Bellman error
Step 4: Adjoint operation
Step 5: Interpret and simulate!

Step 1: Recognize fixed point equation for the Q-functionStep 1: Recognize fixed point equation for the Q-function

Q-function: Q-function:

Its minimum:Its minimum:

Fixed point equation:Fixed point equation:

c(x,u) +DuJ∗∗ (x)=H (x,u)

H∗(x) := min
u∈U

H∗(x,u) = γJ∗(x)

DuH∗ (x) = −γ(c(x,u)−H∗(x,u))

Q learning - Steps towards an algorithm

−1 0 1
−1

0

1

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Optimal policy

Step 1: Recognize �xed point equation for the Q-function
Step 2: Find a stabilizing policy that is ergodic
Step 3: Optimality criterion - minimize Bellman error
Step 4: Adjoint operation
Step 5: Interpret and simulate!

DuH∗ (x) = d
dtH

∗(x(t))
x=x(t)
u=u(t)

Step 1: Recognize fixed point equation for the Q-functionStep 1: Recognize fixed point equation for the Q-function

Q-function: Q-function:

Its minimum:Its minimum:

Fixed point equation:Fixed point equation:

Key observation for learning: For any input-output pair,Key observation for learning: For any input-output pair,

c(x,u) +DuJ∗∗ (x)=H (x,u)

H∗(x) := min
u∈U

H∗(x,u) = γJ∗(x)

DuH∗ (x) = −γ(c(x,u)−H∗(x,u))

Q learning - LQR example

−1 0 1
−1

0

1

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Optimal policy

Step 2: Find a stabilizing policy that is ergodic
Step 3: Optimality criterion - minimize Bellman error
Step 4: Adjoint operation
Step 5: Interpret and simulate!

Linear model and quadratic cost,

Cost:

Q-function:

c(x, u) = 1
2xTQx + 1

2uTRu

H∗(x) = c(x, u) + (Ax + Bu)TP ∗x

Solves Riccatti eqn

Q learning - LQR example

−1 0 1
−1

0

1

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Optimal policy

Step 2: Find a stabilizing policy that is ergodic
Step 3: Optimality criterion - minimize Bellman error
Step 4: Adjoint operation
Step 5: Interpret and simulate!

Linear model and quadratic cost,

Cost:

Q-function:

Q-function approx:

Minimum:

Minimizer:

Hθ(x) = 1
2xT Q + Eθ − F θT

R−1F θ x

φθ(x) =uθ(x) = −R−1F θx

c(x, u) = 1
2xTQx + 1

2uTRu

H∗(x) = c(x, u) + (Ax + Bu)TP ∗x

Solves Riccatti eqn

Hθ(x, u) = c(x, u) + 1
2

dx

i=1

θx
ix

TEix +

dxu

j=1

θx
jx

TF iu

Q learning - Steps towards an algorithm

−1 0 1
−1

0

1

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Optimal policy

Step 1: Recognize �xed point equation for the Q-function
Step 2: Find a stabilizing policy that is ergodic
Step 3: Optimality criterion - minimize Bellman error
Step 4: Adjoint operation
Step 5: Interpret and simulate!

Step 2: Stationary policy that is ergodic?Step 2: Stationary policy that is ergodic?

Assume the LLN holds for continuous functionsAssume the LLN holds for continuous functions

AsAs

F : R × R u → R
T → ∞,

1

T

T

0

F (x(t), u(t)) dt −→
X×U

F (x, u) (dx, du)

Q learning - Steps towards an algorithm

−1 0 1
−1

0

1

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Optimal policy

Step 1: Recognize �xed point equation for the Q-function
Step 2: Find a stabilizing policy that is ergodic
Step 3: Optimality criterion - minimize Bellman error
Step 4: Adjoint operation
Step 5: Interpret and simulate!

Step 2: Stationary policy that is ergodic?Step 2: Stationary policy that is ergodic?

Suppose for example the input is scalar, and the system is stable
 [Bounded-input/Bounded-state]
Suppose for example the input is scalar, and the system is stable
 [Bounded-input/Bounded-state]

Can try a linear
combination
of sinusouids

Can try a linear
combination
of sinusouids

Q learning - Steps towards an algorithm

−1 0 1
−1

0

1

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Optimal policy

Step 1: Recognize �xed point equation for the Q-function
Step 2: Find a stabilizing policy that is ergodic
Step 3: Optimality criterion - minimize Bellman error
Step 4: Adjoint operation
Step 5: Interpret and simulate!

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

u(t) = A(sin(t) + sin(πt) + sin(et))

Step 2: Stationary policy that is ergodic?Step 2: Stationary policy that is ergodic?

Suppose for example the input is scalar, and the system is stable
 [Bounded-input/Bounded-state]
Suppose for example the input is scalar, and the system is stable
 [Bounded-input/Bounded-state]

Can try a linear
combination
of sinusouids

Can try a linear
combination
of sinusouids

Q learning - Steps towards an algorithm

−1 0 1
−1

0

1

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Optimal policy

Step 1: Recognize �xed point equation for the Q-function
Step 2: Find a stabilizing policy that is ergodic
Step 3: Optimality criterion - minimize Bellman error
Step 4: Adjoint operation
Step 5: Interpret and simulate!

Based on observations, minimize the mean-square Bellman error:Based on observations, minimize the mean-square Bellman error:

First order condition for optimality:First order condition for optimality:

θ θ,

with ψθ θ
i (x) = ψθ

i (x, φ (x)),
1 ≤ i ≤ d

θ,Duψθ
i − γψθ

i = 0

Step 3: Bellman errorStep 3: Bellman error

Q learning - Convex Reformulation

−1 0 1
−1

0

1

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Optimal policy

Step 2: Find a stabilizing policy that is ergodic
Step 3: Optimality criterion - minimize Bellman error
Step 4: Adjoint operation
Step 5: Interpret and simulate!

Based on observations, minimize the mean-square Bellman error:Based on observations, minimize the mean-square Bellman error:

θ θ,

G

Gθ(x) ≤ Hθ(x, u), all x, u

Step 3: Bellman errorStep 3: Bellman error

Q learning - LQR example

−1 0 1
−1

0

1

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Optimal policy

Step 2: Find a stabilizing policy that is ergodic
Step 3: Optimality criterion - minimize Bellman error
Step 4: Adjoint operation
Step 5: Interpret and simulate!

Linear model and quadratic cost,

Cost:

Q-function:

Q-function approx:

Approximation to minimum

Minimizer:

G θ(x) = 1
2xT Gθ x

φθ(x) =uθ(x) = −R−1F θx

c(x, u) = 1
2xTQx + 1

2uTRu

H∗(x) = c(x, u) + (Ax + Bu)TP ∗x

Solves Riccatti eqn

Hθ(x, u) = c(x, u) + 1
2

dx

i=1

θx
ix

TEix +

dxu

j=1

θx
jx

TF iu

Q learning - Steps towards an algorithm

g : R × R w → R

Rβg (x, w) =
∞

0

e−βtg(x(t), ξ(t)) dt

Step 4: Causal smoothing to avoid differentiationStep 4: Causal smoothing to avoid differentiation

For any function of two variables,
Resolvent gives a new function,
For any function of two variables,
Resolvent gives a new function,

Skip to examples

Q learning - Steps towards an algorithm

g : R × R w → R

Rβg (x, w) =
∞

0

e−βtg(x(t), ξ ,(t)) dt β > 0

Step 4: Causal smoothing to avoid differentiationStep 4: Causal smoothing to avoid differentiation

For any function of two variables,
Resolvent gives a new function,
For any function of two variables,
Resolvent gives a new function,

controlled using the nominal policycontrolled using the nominal policy

stabilizing & ergodicstabilizing & ergodic

u(t) = φ(x(t), ξ(t)), t ≥ 0

Q learning - Steps towards an algorithm

g : R × R w → R

Rβg (x, w) =
∞

0

e−βtg(x(t), ξ ,(t)) dt β > 0

Step 4: Causal smoothing to avoid differentiationStep 4: Causal smoothing to avoid differentiation

For any function of two variables,
Resolvent gives a new function,
For any function of two variables,
Resolvent gives a new function,

Resolvent equation:Resolvent equation:

Q learning - Steps towards an algorithm

g : R × R w → R

Rβg (x, w) =
∞

0

e−βtg(x(t), ξ ,(t)) dt β > 0

Lθ,β = RβLθ

= [βRβ − I]Hθ + γRβ(c − Hθ)

Step 4: Causal smoothing to avoid differentiationStep 4: Causal smoothing to avoid differentiation

For any function of two variables,
Resolvent gives a new function,
For any function of two variables,
Resolvent gives a new function,

Resolvent equation:Resolvent equation:

Smoothed Bellman error:Smoothed Bellman error:

Q learning - Steps towards an algorithm

Eβ(θ) := 1
2

θ,β 2

∇Eβ(θ) =

 =

θ,β ,∇θLθ,β

Smoothed Bellman error:Smoothed Bellman error:

zero at an optimumzero at an optimum

Step 4: Causal smoothing to avoid differentiationStep 4: Causal smoothing to avoid differentiation

Q learning - Steps towards an algorithm

Eβ(θ) := 1
2

θ,β 2

∇Eβ(θ) =

 =

θ,β ,∇θLθ,β

Smoothed Bellman error:Smoothed Bellman error:

zero at an optimumzero at an optimum

Step 4: Causal smoothing to avoid differentiationStep 4: Causal smoothing to avoid differentiation

Involves terms of the formInvolves terms of the form Rβg,R βh

Q learning - Steps towards an algorithm

Eβ(θ) := 1
2

θ,β 2

∇Eβ(θ) = θ,β ,∇θLθ,β

R†
βRβ = (R†

β + Rβ)

Rβg,R βh =
1

2β
g,R †

βh + h,R †
βg

1

2β

Smoothed Bellman error:Smoothed Bellman error:

Adjoint operation: Adjoint operation:

Step 4: Causal smoothing to avoid differentiationStep 4: Causal smoothing to avoid differentiation

Q learning - Steps towards an algorithm

Eβ(θ) := 1
2

θ,β 2

∇Eβ(θ) = θ,β ,∇θLθ,β

R†
βRβ = (R†

β + Rβ)

Rβg,R βh =
1

2β
g,R †

βh + h,R †
βg

1

2β

Smoothed Bellman error:Smoothed Bellman error:

Adjoint operation: Adjoint operation:

Step 4: Causal smoothing to avoid differentiationStep 4: Causal smoothing to avoid differentiation

Adjoint realization: time-reversal Adjoint realization: time-reversal

R†
βg (x, w) =

∞

0

e−βtEx, w [g(x◦(−t), ξ◦(−t))] dt

expectation conditional on x◦(0) = x, ξ◦(0) = w.

Q learning - Steps towards an algorithm

−1 0 1
−1

0

1

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Optimal policy

Step 1: Recognize �xed point equation for the Q-function
Step 2: Find a stabilizing policy that is ergodic
Step 3: Optimality criterion - minimize Bellman error
Step 4: Adjoint operation
Step 5: Interpret and simulate!

After Step 5: Not quite adaptive control:After Step 5: Not quite adaptive control:

Ergodic input appliedErgodic input applied

Desired behavior

Measured behavior

Compare
and learn Inputs

Outputs

Complex system

Q learning - Steps towards an algorithm

−1 0 1
−1

0

1

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Optimal policy

After Step 5: Not quite adaptive control:After Step 5: Not quite adaptive control:

Ergodic input applied
Based on observations minimize the mean-square Bellman error:
Ergodic input applied
Based on observations minimize the mean-square Bellman error:

Desired behavior

Measured behavior

Compare
and learn Inputs

Outputs

Complex system

d
dth(x(t))

x=x(t)
w=ξ(t)

= Duh (x)

Deterministic Stochastic Approximation

0 1 2 3 4 5 6 7 8 9 10

0

1

-1

(in
di

vi
du

al
 st

at
e)

(e
ns

em
bl

e
st

at
e)

Gradient descent:Gradient descent:

Converges* to the minimizer of the mean-square Bellman error:Converges* to the minimizer of the mean-square Bellman error:

Convergence observed in experiments!
For a convex re-formulation of
the problem, see Mehta & Meyn 2009

*

d
dtθ = −ε θ,Du∇θH

θ − γ∇θH
θ

d
dth(x(t))

x=x(t)
w=ξ(t)

= Duh (x)

Deterministic Stochastic Approximation

0 1 2 3 4 5 6 7 8 9 10

0

1

-1

(in
di

vi
du

al
 st

at
e)

(e
ns

em
bl

e
st

at
e)

Stochastic ApproximationStochastic Approximation

d
dtθ = −ε θ,Du∇θH

θ − γ∇θH
θ

Gradient descent:

Mean-square Bellman error:

d
dtθ = −εtLθ

t
d
dt∇θH

θ (x◦(t)) − γ∇θH
θ(x◦(t), u◦(t))

Lθ
t := d

dtH
θ (x◦(t))+γ(c(x◦(t) u◦(t))−Hθ(x◦(t), ◦(t)))u,

Outline

Step 1: Recognize
Step 2: Find a stab...
Step 3: Optimality
Step 4: Adjoint
Step 5: Interpret

Q-learning for nonlinear state space models

Example: Decentralized control

Example: Local approximation

Q learning - Local Learning

Cubic nonlinearity:Cubic nonlinearity:

Desired behavior

Measured behavior

Compare
and learn Inputs

Outputs

Complex system

d
dtx = −x3 + u, c(x, u) = 1

2x2 + 1
2u2

Q learning - Local Learning

Cubic nonlinearity:Cubic nonlinearity:

HJB:HJB:

Desired behavior

Measured behavior

Compare
and learn Inputs

Outputs

Complex system

d
dtx = −x3 + u, c(x, u) = 1

2x2 + 1
2u2

min
u

1
2x2 + 1

2u2 + (−x3 + u)∇J∗(x) = γJ∗(x)()

Q learning - Local Learning

Cubic nonlinearity:Cubic nonlinearity:

HJB:HJB:

Basis:Basis:

Desired behavior

Measured behavior

Compare
and learn Inputs

Outputs

Complex system

d
dtx = −x3 + u, c(x, u) = 1

2x2 + 1
2u2

min
u

1
2x2 + 1

2u2 + (−x3 + u)∇J∗(x) = γJ∗(x)()

Hθ(x, u) = c(x, u) + θxx2 + θxu x

1 + 2x2
u

Q learning - Local Learning

Cubic nonlinearity:Cubic nonlinearity:

HJB:HJB:

Basis:Basis:

Low amplitude inputLow amplitude input High amplitude inputHigh amplitude input

Desired behavior

Measured behavior

Compare
and learn Inputs

Outputs

Complex system

0.01

0.02

0.03

0.04

0.05

0.06

−1 0 1
−1

0

1

Optimal policy

−1 0 1
−1

0

1

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Optimal policy

u(t) = A(sin(t) + sin(πt) + sin(et))

d
dtx = −x3 + u, c(x, u) = 1

2x2 + 1
2u2

min
u

1
2x2 + 1

2u2 + (−x3 + u)∇J∗(x) = γJ∗(x)()

Hθ(x, u) = c(x, u) + θxx2 + θxu x

1 + 2x2
u

Outline

Example: Local approximation

Step 1: Recognize
Step 2: Find a stab...
Step 3: Optimality
Step 4: Adjoint
Step 5: Interpret

Q-learning for nonlinear state space models

Example: Decentralized control

Multi-agent model
M. Huang, P. E. Caines, and R. P. Malhame. Large-population
cost-coupled LQG problems with nonuniform agents: Individual-mass
behavior and decentralized ε-Nash equilibria. IEEE Trans. Auto.
Control, 52(9):1560–1571, 2007.

Huang et. al. Local optimization for global coordinationHuang et. al. Local optimization for global coordination

Multi-agent model

Model: Linear autonomous models - global cost objectiveModel: Linear autonomous models - global cost objective

HJB: Individual state + global average HJB: Individual state + global average

Basis: Consistent with low dimensional LQG modelBasis: Consistent with low dimensional LQG model

Results from five agent model:Results from five agent model:

Multi-agent model

Model: Linear autonomous models - global cost objectiveModel: Linear autonomous models - global cost objective

HJB: Individual state + global average HJB: Individual state + global average

Basis: Consistent with low dimensional LQG modelBasis: Consistent with low dimensional LQG model

Estimated state feedback gainsEstimated state feedback gains

Gains for agent 4: Q-learning sample paths

and gains predicted from ∞-agent limit

Gains for agent 4: Q-learning sample paths

and gains predicted from ∞-agent limit

Results from five agent model:Results from five agent model:

0

1

-1

(individual state)

(ensemble state)

time

Outline

?

Step 1: Recognize
Step 2: Find a stab...
Step 3: Optimality
Step 4: Adjoint
Step 5: Interpret

Example: Decentralized controlExample: Decentralized control

... Conclusions... Conclusions

Coarse models - what to do with them?Coarse models - what to do with them?

Q-learning for nonlinear state space modelsQ-learning for nonlinear state space models

Example: Local approximationExample: Local approximation

Conclusions

Coarse models give tremendous insight

They are also tremendously useful
for design in approximate dynamic programming algorithms

Coarse models give tremendous insight

They are also tremendously useful
for design in approximate dynamic programming algorithms

Conclusions

Coarse models give tremendous insight

They are also tremendously useful
for design in approximate dynamic programming algorithms

Q-learning is as fundamental as the Riccati equation - this
should be included in our first-year graduate control courses

Coarse models give tremendous insight

They are also tremendously useful
for design in approximate dynamic programming algorithms

Q-learning is as fundamental as the Riccati equation - this
should be included in our first-year graduate control courses

Conclusions

Coarse models give tremendous insight

They are also tremendously useful
for design in approximate dynamic programming algorithms

Q-learning is as fundamental as the Riccati equation - this
should be included in our first-year graduate control courses

Coarse models give tremendous insight

They are also tremendously useful
for design in approximate dynamic programming algorithms

Q-learning is as fundamental as the Riccati equation - this
should be included in our first-year graduate control courses

Current research: Current research: Algorithm analysis and improvements
Applications in biology and economics
Analysis of game-theoretic issues
 in coupled systems

Algorithm analysis and improvements
Applications in biology and economics
Analysis of game-theoretic issues
 in coupled systems

[1] W. Chen, D. Huang, A. Kulkarni, J. Unnikrishnan, Q. Zhu, P. Mehta, S. Meyn, and A. Wierman.
Approximate dynamic programming using fluid and diffusion approximations with applications to power
management. Accepted for inclusion in the 48th IEEE Conference on Decision and Control, December
16-18 2009.

[1] P. Mehta and S. Meyn. Q-learning and Pontryagin’s Minimum Principle. To appear in Proceedings of
the 48th IEEE Conference on Decision and Control, December 16-18 2009.

[1] R.-R. Chen and S. P. Meyn. Value iteration and optimization of multiclass queueing networks. Queueing
Syst. Theory Appl., 32(1-3):65–97, 1999.

[1] S. G. Henderson, S. P. Meyn, and V. B. Tadić. Performance evaluation and policy selection in multiclass
networks. Discrete Event Dynamic Systems: Theory and Applications, 13(1-2):149–189, 2003. Special
issue on learning, optimization and decision making (invited).

[1] S. P. Meyn. The policy iteration algorithm for average reward Markov decision processes with general
state space. IEEE Trans. Automat. Control, 42(12):1663–1680, 1997.

[1] S. P. Meyn. Control Techniques for Complex Networks. Cambridge University Press, Cambridge, 2007.

[1] C. Moallemi, S. Kumar, and B. Van Roy. Approximate and data-driven dynamic programming for
queueing networks. Preprint available at http://moallemi.com/ciamac/research-interests.php, 2008.

References

References

[1] D. H. Jacobson. Di�erential dynamic programming methods for determining optimal control of non-linear systems. PhD thesis, Univ. of London, 1967

[2] D. H. Jacobson and D. Q. Mayne. Di�erential dynamic programming. American Elsevier Pub. Co., New York, NY, 1970.

[3] C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, King’s College, Cambridge, UK, 1989.

[4] C. J. C. H. Watkins and P. Dayan. Q-learning. Machine Learning, 8(3-4):279–292, 1992.

[5] J. N. Tsitsiklis and B. Van Roy. Optimal stopping of Markov processes: Hilbert space theory, approximation algorithms, and an application to
 pricing high-dimensional �nancial derivatives. IEEE Trans. Automat. Control, 44(10):1840–1851, 1999.

[6] V. S. Borkar and S. P. Meyn. The ODE method for convergence of stochastic approximation and reinforcement learning. SIAM J. Control Optim., 38(2):447–469, 2000.

[7] H. Yu and D. P. Bertsekas. Q-learning algorithms for optimal stopping based on least squares. In Proc. European Control Conference (ECC), July 2007.

[8] C. Moallemi, S. Kumar, and B. Van Roy. Approximate and data-driven dynamic programming for queueing networks.
 Preprint available at http://moallemi.com/ciamac/research-interests.php, 2008.

[9] A. Al-Tamimi, F. L. Lewis, and M. Abu-Khalaf. Brief paper: Model-free Q-learning designs for linear discrete-time zero-sum games with application to H-in�nity control.
 Automatica, 43(3):473–481, 2007.

[10] D. Vrabie, O. Pastravanu, M. Abu-Khalaf, and F. Lewis. Adaptive optimal control for continuous-time linear systems based on policy iteration.
 Automatica, 45(2):477 – 484, 2009.

[11] S. P. Meyn. Control Techniques for Complex Networks. Cambridge University Press, Cambridge, 2007.

[12] S. G. Henderson, S. P. Meyn, and V. B. Tadi?. Performance evaluation and policy selection in multiclass networks. Discrete Event Dynamic Systems:
 Theory and Applications, 13(1-2):149–189, 2003. Special issue on learning, optimization and decision making (invited).

[13] W. Chen, D. Huang, A. Kulkarni, J. Unnikrishnan, Q. Zhu, P. Mehta, S. Meyn, and A. Wierman. Approximate dynamic programming using �uid
 and di�usion approximations with applications to power management. 48th IEEE Conference on Decision and Control, December 16-18 2009.

	title_f.ai
	Introduction_f_p1.ai
	Introduction_f_p2.ai
	Introduction_f_p3.ai
	TD-learning_intro_f_p1.ai
	TD-learning_intro_f_p2.ai
	Jtighttoh_f.ai
	relatedwork_f_p1.ai
	relatedwork_f_p2.ai
	dynamicspeedscaling_f.ai
	fluidmodel_f.ai
	connection_f_p1.ai
	connection_f_p2.ai
	approximatec_f_p1.ai
	approximatec_f_p2.ai
	structureofJ_f.ai
	lowerbound_f_p1.ai
	lowerbound_f_p2.ai
	upperbound_f_p1.ai
	upperbound_f_p2.ai
	upperbound_f_p3.ai
	Jtighttoh_f.ai
	TDlearning_experiment_f.ai
	TDPIA_f.ai
	conclusion_f.ai
	valueiteration_f.ai
	policycomparison_f.ai

