Contents

2 Approximate Dynamic Programming using
2 Fluid and Diffusion Approximations with Applications to Power Management

3 Q-Learning
and Pontryagin's Minimum Principle

11.5 Estimating a value function

11.5 Estimating a value function

Value functions have appeared in a surprising range of contexts in this book.
(i) The usual home for value functions is within the field of optimization. In the setting of this book, this means MDPs. Chapter 9 provides many examples, following the introduction for the single server queue presented in Chapter 3.
(ii) The stability theory for Markov chains and networks in this book is centered around Condition (V3). This is closely related to Poisson's inequality, which is itself a generalization of the average-cost value function.
(iii) Theorem 8.4.1 contains general conditions ensuring that the h-MaxWeight policy is stabilizing. The essence of the proof is that the function h is an approximation to Poisson's equation under the assumptions of the theorem.
(iv) We have just seen how approximate solutions to Poisson's equation can be used to dramatically accelerate simulation.

TD Learning

Notation: h value function
h^{θ} approximation
ψ^{θ} its gradient: $\psi^{\theta}(x):=\nabla_{\theta} h^{\theta}(x)$
L_{2} error:

$$
\begin{equation*}
\mathcal{E}(\theta)=\left\|h-h^{\theta}\right\|_{\pi}^{2}:=\mathrm{E}_{\pi}\left[\left|h(X(0))-h^{\theta}(X(0))\right|^{2}\right] \tag{11.61}
\end{equation*}
$$

Goal: Find θ minimizing this error

TD Learning

Notation: h value function
h^{θ} approximation
ψ^{θ} its gradient: $\psi^{\theta}(x):=\nabla_{\theta} h^{\theta}(x)$
L_{2} error:

$$
\begin{equation*}
\mathcal{E}(\theta)=\left\|h-h^{\theta}\right\|_{\pi}^{2}:=\mathrm{E}_{\pi}\left[\left|h(X(0))-h^{\theta}(X(0))\right|^{2}\right] \tag{11.61}
\end{equation*}
$$

Goal: Find θ minimizing this error

Gradient:

$$
\nabla_{\theta}\left\|h^{\theta}-h\right\|_{\pi}^{2}=2 \mathrm{E}_{\pi}\left[\left(h^{\theta}(X)-h(X)\right) \psi^{\theta}(X)\right]
$$

Solution for linear parameterization:

$$
\begin{aligned}
\theta^{*}=M_{\psi}^{-1} b_{\psi}, \quad \text { where } M_{\psi} & =\mathrm{E}\left[\psi(X) \psi(X)^{\mathrm{T}}\right] \\
b_{\psi} & =\mathrm{E}[h(X) \psi(X)]
\end{aligned}
$$

TD Learning for Discounted Cost

Notation: $\quad h$ value function

$$
h=R_{\gamma} c \quad R_{\gamma}=\sum_{t=0}^{\infty}(1+\gamma)^{-t-1} P^{t}
$$

Solution for linear parameterization:

$$
\begin{aligned}
\theta^{*}=M_{\psi}^{-1} b_{\psi}, \quad \text { where } M_{\psi} & =\mathrm{E}\left[\psi(X) \psi(X)^{\mathrm{T}}\right] \\
b_{\psi} & =\mathrm{E}[h(X) \psi(X)]
\end{aligned}
$$

TD Learning for Discounted Cost

Notation: h value function

$$
h=R_{\gamma} c \quad R_{\gamma}=\sum_{t=0}^{\infty}(1+\gamma)^{-t-1} P^{t}
$$

Hilbert space notation:

$$
\begin{aligned}
b_{\psi} & =\mathrm{E}[h(X) \psi(X)] \\
& =\left\langle R_{\gamma} c, \psi\right\rangle_{\pi}
\end{aligned}
$$

Solution for linear parameterization:

$$
\begin{aligned}
\theta^{*}=M_{\psi}^{-1} b_{\psi}, \quad \text { where } M_{\psi} & =\mathrm{E}\left[\psi(X) \psi(X)^{\mathrm{T}}\right] \\
b_{\psi} & =\mathrm{E}[h(X) \psi(X)]
\end{aligned}
$$

TD Learning for Discounted Cost

Notation: h value function

$$
h=R_{\gamma} c \quad R_{\gamma}=\sum_{t=0}^{\infty}(1+\gamma)^{-t-1} P^{t}
$$

Hilbert space notation:

$$
\begin{aligned}
b_{\psi} & =\mathrm{E}[h(X) \psi(X)] \\
& =\left\langle R_{\gamma} c, \psi\right\rangle_{\pi}
\end{aligned}
$$

Adjoint representation:

$$
b_{\psi}=\left\langle c, R_{\gamma}^{\dagger} \psi\right\rangle_{\pi}
$$

Solution for linear parameterization:

$$
\begin{aligned}
\theta^{*}=M_{\psi}^{-1} b_{\psi}, \quad \text { where } M_{\psi} & =\mathrm{E}\left[\psi(X) \psi(X)^{\mathrm{T}}\right] \\
b_{\psi} & =\mathrm{E}[h(X) \psi(X)]
\end{aligned}
$$

TD Learning for Discounted Cost

Notation: h value function

$$
h=R_{\gamma} c \quad R_{\gamma}=\sum_{t=0}^{\infty}(1+\gamma)^{-t-1} P^{t}
$$

Hilbert space notation:

$$
\begin{aligned}
b_{\psi} & =\mathrm{E}[h(X) \psi(X)] \\
& =\left\langle R_{\gamma} c, \psi\right\rangle_{\pi}
\end{aligned}
$$

Adjoint representation:

$$
b_{\psi}=\left\langle c, R_{\gamma}^{\dagger} \psi\right\rangle_{\pi}
$$

Adjoint: Resolvent for time-reversed process:

$$
R_{\gamma}^{\dagger} g(x)=\sum_{t=0}^{\infty}(1+\gamma)^{-t-1} \mathrm{E}[g(X(-t)) \mid X(0)=x], \quad x \in \mathrm{X}
$$

Solution for linear parameterization:

$$
\begin{aligned}
\theta^{*}=M_{\psi}^{-1} b_{\psi}, \quad \text { where } M_{\psi} & =\mathrm{E}\left[\psi(X) \psi(X)^{\mathrm{T}}\right] \\
b_{\psi} & =\mathrm{E}[h(X) \psi(X)]
\end{aligned}
$$

TD Learning for Discounted Cost

Algorithm:

$$
\text { Elligibility vectors: } \quad \varphi(k)=\sum_{t=0}^{k}(1+\gamma)^{-t-1} \psi(X(k-t))
$$

Law of Large Number approximations:

$$
\begin{aligned}
& b_{\psi}^{n}=\frac{1}{n} \sum_{k=1}^{n} \varphi(k) c(X(k)) \\
& M_{\psi}^{n}=\frac{1}{n} \sum_{k=1}^{n} \psi(k) \psi(k)^{T} \\
& R_{\gamma} \dagger g(x)=\sum_{t=0}^{\infty}(1+\gamma)^{-t-1} \mathrm{E}[g(X(-t)) \quad X(0)=x], \quad x \in \mathrm{X}
\end{aligned}
$$

Solution for linear parameterization:

$$
\begin{aligned}
\theta^{*}=M_{\psi}^{-1} b_{\psi}, \quad \text { where } M_{\psi} & =\mathrm{E}\left[\psi(X) \psi(X)^{\mathrm{T}}\right] \\
b_{\psi} & =\mathrm{E}[h(X) \psi(X)] \\
& =\left\langle c, R_{\gamma}^{\dagger} \psi\right\rangle_{\pi}
\end{aligned}
$$

TD Learning for Discounted Cost

Algorithm:
Elligibility vectors: $\quad \varphi(k)=\sum_{t=0}^{k}(1+\gamma)^{-t-1} \psi(X(k-t))$
Law of Large Number approximations:

$$
\begin{array}{rll}
b_{\psi}^{n}=\frac{1}{n} \sum_{k=1}^{n} \varphi(k) c(X(k)) & \text { Estimate: } \\
M_{\psi}^{n} & =\frac{1}{n} \sum_{k=1}^{n} \psi(k) \psi(k)^{T} & \theta(n)=\left[M_{\psi}^{n}\right]^{-1} b_{\psi}^{n} \\
& \text { Inverse recursively computed } \\
&
\end{array}
$$

Solution for linear parameterization:

$$
\begin{aligned}
\theta^{*}=M_{\psi}^{-1} b_{\psi}, \quad \text { where } M_{\psi} & =\mathrm{E}\left[\psi(X) \psi(X)^{\mathrm{T}}\right] \\
b_{\psi} & =\mathrm{E}[h(X) \psi(X)] \\
& =\left\langle c, R_{\gamma}^{\dagger} \psi\right\rangle_{\pi}
\end{aligned}
$$

Approximate Dynamic Programming using Fluid and Diffusion Approximations with Applications to Power Management

Speaker: Dayu Huang

Wei Chen, Dayu Huang, Ankur A. Kulkarni, ${ }^{\text {J }}$ Jayakrishnan Unnikrishnan, Quanyan Zhu, Prashant Mehta, Sean Meyn, and Adam Wierman 2

Coordinated Science Laboratory, UIUC Dept. of IESE, UIUC 1
Dept. of CS, California Inst. of Tech. 2

Introduction

MDP model
Control

$$
X(t+1)=X(t)+f(X(t), U(t), W(t+1))
$$

Cost $\quad c(x, u)$
Minimize average cost $\quad \lim \sup _{n \rightarrow \infty} \frac{1}{n} \sum_{t=0}^{n-1} \mathrm{E}[c(X(t), U(t))]$

Introduction

MDP model

Control

$$
X(t+1)=X(t)+f(X(t), U(t), W(t+1))
$$

Cost $\quad c(x, u)$
Minimize average cost $\quad \lim \sup _{n \rightarrow \infty} \frac{1}{n} \sum_{t=0}^{n-1} \mathrm{E}[c(X(t), U(t))]$
Generator

$$
\mathcal{D}_{u} h(x):=\mathrm{E}[h(X(t+1))-h(X(t)) \mid X(t)=x, U(t)=u]
$$

Introduction

MDP model

Control

$$
X(t+1)=X(t)+f(X(t), U(t), W(t+1))
$$

Cost $c(x, u)$
Minimize average cost $\quad \lim \sup _{n \rightarrow \infty} \frac{1}{n} \sum_{t=0}^{n-1} \mathrm{E}[c(X(t), U(t))]$
Average Cost Optimality Equation (ACOE)

$$
\min _{u}\left(c(x, u)+\mathcal{D}_{u} h^{*}(x)\right)=\eta^{*}
$$

Generator $\mathcal{D}_{u} h(x):=\mathrm{E}[h(X(t+1))-h(X(t)) \mid X(t)=x, U(t)=u]$
h^{*} Relative value function
Solve ACOE and Find h^{*}

TD Learning

$$
\min _{u}\left(c(x, u)+\mathcal{D}_{u} h^{*}(x)\right)=\eta^{*}
$$

- The "curse of dimensionality":

Complexity of solving ACOE grows exponentially with the dimension of the state space.

■ Approximate h^{*} within a finite-dimensional function class

$$
h^{r}=\sum r_{i} \psi_{i}
$$

■ Criterion: minimize the mean-squre error

$$
\mathrm{E}_{\pi}\left[\left(h(X(0))-h^{r}(X(0))\right)^{2}\right]
$$

TD Learning

$$
\min _{u}\left(c(x, u)+\mathcal{D}_{u} h^{*}(x)\right)=\eta^{*}
$$

- The "curse of dimensionality":

Complexity of solving ACOE grows exponentially with the dimension of the state space.

■ Approximate h^{*} within a finite-dimensional function class

$$
h^{r}=\sum r_{i} \psi_{i}
$$

■ Criterion: minimize the mean-squre error

$$
\mathrm{E}_{\pi}\left[\left(h(X(0))-h^{r}(X(0))\right)^{2}\right]
$$

solved by stochastic approximation algorithms
Problem: How to select the basis functions $\left\{\psi_{i}, 1 \leq i \leq d\right\}$?
key to the success of TD learning

Approach Based on Fluid and Diffusion Models

Value function of the fluid model J^{*} Total cost for
 an associated deterministic model

is a tight approximation to h^{*}

J^{*} can be used as a part of the basis $\left\{\psi_{i}\right\}$

Related Work

Multiclass queueing network

Meyn 1997, Meyn 1997b

optimal control	Chen and Meyn 1999
simulation	Hendersen et.al. 2003
network scheduling	Veatch 2004
and routing	Moallemi, Kumar and Van Roy 2006 Meyn 2007 \quadControl Techniques for Complex Networks other approaches
Tsitsiklis and Van Roy 1997 Mannor, Menache and Shimkin 2005	

Control Tectiriques for Complex Notworks

Mannor, Menache and Shimkin 2005

Related Work

Multiclass queueing network

optimal control	Chen and Meyn 1999
simulation	Hendersen et.al. 2003
network scheduling	Veatch 2004
and routing	Moallemi, Kumar and Van Roy 2006

Control Tectiriques for ComplexNatworks

Taylor series approximation this work

Power Management via Speed Scaling

Single processor

$$
Q(t+1)=Q(t)-U(t)+A(t+1)
$$

processing rate $U(t)$ determined by the current power

Control the processing speed to balance delay and energy costs

$$
c(x, u)=x+\beta \mathcal{P}(u)
$$

Processor design: polynomial cost $\mathcal{P}(u) \propto u^{\varrho}$

Kaxiras and Martonosi 2008
Wierman, Andrew and Tang 2009

We also consider $\mathcal{P}(u) \propto e^{\kappa u}$ for wireless communication applications

Fluid Model

$$
\operatorname{MDP}_{X(t+1)}=X(t)+f(X(t), U(t), W(t+1))
$$

Fluid model:

$$
\begin{aligned}
& \frac{d}{d t} x(t)=\bar{f}(x(t), u(t)) \\
& \bar{f}(x, u):=\mathrm{E}[f(x, u, W(1))]
\end{aligned}
$$

Total Cost

$$
J^{*}(x)=\inf _{\mathbf{u}} \int_{0}^{T_{0}} c(x(t), u(t)) d t, x(0)=x
$$

Total Cost Optimality Equation (TCOE) for the fluid model:

$$
\min _{u}\left(c(x, u)+\nabla J^{*}(x) \cdot \bar{f}(x, u)\right)=0
$$

Why Fluid Model?

$$
\operatorname{MDP}_{X(t+1)}=X(t)+f(X(t), U(t), W(t+1))
$$

First order Taylor series approximation

$$
\begin{aligned}
\mathcal{D}_{u} J^{*}(x) & \approx \mathrm{E}_{x, u}\left[\nabla J^{*}(X(0))(X(1)-X(0))\right] \\
& =\nabla J^{*}(x) \bar{f}(x, u)
\end{aligned}
$$

Why Fluid Model?

$\operatorname{MDP}_{X(t+1)}=X(t)+f(X(t), U(t), W(t+1))$

First order Taylor series approximation

$$
\begin{aligned}
\mathcal{D}_{u} J^{*}(x) & \approx \mathrm{E}_{x, u}\left[\nabla J^{*}(X(0))(X(1)-X(0))\right] \\
& =\nabla J^{*}(x) \bar{f}(x, u)
\end{aligned}
$$

TCOE $\quad \min _{u}\left(c(x, u)+\nabla J^{*}(x) \cdot \bar{f}(x, u)\right)=0$

$$
\approx c(x, u)+\mathcal{D}_{u} J^{*}(x)
$$

ACOE

$$
\min _{u}\left(c(x, u)+\mathcal{D}_{u} h^{*}(x)\right)=\eta^{*}
$$

J^{*} almost solves the ACOE
Simple but powerful idea!

Approach Based on Fluid and Diffusion Models

Value function of the fluid model $J^{*} \begin{aligned} & \text { Total cost for } \\ & \text { an associated deterministic model }\end{aligned}$ is a tight approximation to h^{*}

J^{*} can be used as a part of the basis $\left\{\psi_{i}\right\}$

Policy

The optimal policy compared to the $\left(c, J^{*}\right)$-myopic policy for the quadratic cost function

Value Iteration

The convergence of value iteration for the quadratic cost function
The error $\left\|h_{n+1}-h_{n}\right\|$ converges to zero much faster when the algorithm is initialized using the fluid value function.

Approximation of the Cost Function

Error Analysis

$$
\begin{aligned}
& \mathcal{E}(x, u)=c(x, u)+\mathcal{D}_{u} J^{*}(x) \\
& \underline{\mathcal{E}}(x)=\min _{0 \leq u \leq x} \mathcal{E}(x, u) \quad \approx \text { constant? }
\end{aligned}
$$

Approximation of the Cost Function

Error Analysis

$$
\begin{aligned}
& \mathcal{E}(x, u)=c(x, u)+\mathcal{D}_{u} J^{*}(x) \\
& \underline{\mathcal{E}}(x)=\min _{0 \leq u \leq x} \mathcal{E}(x, u) \approx \text { constant? }
\end{aligned}
$$

Surrogate cost $\quad c^{\circ}(x, u)=c(x, u)-\underline{\mathcal{E}}(x)+\eta^{\circ}$

$$
\min _{0 \leq u \leq x}\left\{c^{\circ}(x, u)-\eta^{\circ}+\mathcal{D}_{u} J^{*}(x)\right\}=0
$$

Bounds on $\underline{\mathcal{E}}(x)$?

$\min _{u}\left(c(x, u)+\nabla J^{*}(x) \cdot \bar{f}(x, u)\right)=0$
 Structure Results on the Fluid Solution $\underset{\sim}{\left.\min (c(x, u)+(x, u))+\mathcal{D}_{w} \cdot\right)^{\prime}(x)}$

Polynomial cost $c(x, u)=x+\beta\left([u-\alpha]_{+}\right)^{\varrho}$
Exponential cost $c(x, u)=x+\beta\left[e^{\kappa u}-e^{\kappa \alpha}\right]_{+}$

Proposition 0.1 For any of the cost functions defined above, the fluid value function J^{*} is increasing, convex, and its second derivative $\nabla^{2} J^{*}$ is non-increasing. Moreover, For polynomial cost the value function and optimal policy are given by, respectively,

$$
\begin{aligned}
J^{*}(x) & =x^{\frac{2 \varrho-1}{\varrho}} \frac{\varrho}{2 \varrho-1}\left(\frac{1}{\beta(\varrho-1)}\right)^{\frac{\varrho-1}{\varrho}} \\
\phi^{\mathrm{F} *}(x) & =\left(\frac{x}{\beta(\varrho-1)}\right)^{1 / \varrho}+\alpha, \quad x \in \mathbb{R}_{+}
\end{aligned}
$$

Lower Bound

$$
\begin{gathered}
\min _{u}\left(c(x, u)+\nabla J^{*}(x) \cdot \bar{f}(x, u)\right)=0 \\
\approx c(x, u)+\mathcal{D}_{u} J^{*}(x) \\
\mathcal{E}(x, u)=c(x, u)+\mathcal{D}_{u} J^{*}(x)
\end{gathered}
$$

Lemma $2 \mathcal{E}(x, u) \geq 0$ everywhere, giving $c \geq c^{\circ}-\eta^{\circ}$.

$$
\begin{aligned}
\mathcal{D}_{u} J^{*}(x) & =\mathrm{E}_{x, u}\left[J^{*}(Q(1))-J^{*}(Q(0))\right] \\
& \geq \mathrm{E}_{x, u}\left[\nabla J^{*}(Q(0)) \cdot((Q(1))-Q(0))\right] \quad \text { Convexity of } J^{*} \\
& =\nabla J^{*}(x) \cdot(-u+\alpha)
\end{aligned}
$$

Lower Bound

$$
\begin{gathered}
\min _{u}\left(c(x, u)+\nabla J^{*}(x) \cdot \bar{f}(x, u)\right)=0 \\
\approx c(x, u)+\mathcal{D}_{u} J^{*}(x) \\
\mathcal{E}(x, u)=c(x, u)+\mathcal{D}_{u} J^{*}(x)
\end{gathered}
$$

Lemma $2 \mathcal{E}(x, u) \geq 0$ everywhere, giving $c \geq c^{\circ}-\eta^{\circ}$.

$$
\begin{aligned}
\mathcal{D}_{u} J^{*}(x) & =\mathrm{E}_{x, u}\left[J^{*}(Q(1))-J^{*}(Q(0))\right] \\
& \geq \mathrm{E}_{x, u}\left[\nabla J^{*}(Q(0)) \cdot((Q(1))-Q(0))\right] \quad \text { Convexity of } J^{*} \\
& =\nabla J^{*}(x) \cdot(-u+\alpha)
\end{aligned}
$$

$$
\mathcal{E}(x, u)=c(x, u)+\mathcal{D}_{u} J^{*}(x)
$$

$$
\geq c(x, u)+\nabla J^{*}(x) \cdot(-u+\alpha)
$$

$$
\geq 0
$$

Upper Bound

$$
\begin{gathered}
\min _{u}\left(c(x, u)+\nabla J^{*}(x) \cdot \bar{f}(x, u)\right)=0 \\
\approx c(x, u)+\mathcal{D}_{u} J^{*}(x) \\
\mathcal{E}(x, u)=c(x, u)+\mathcal{D}_{u} J^{*}(x)
\end{gathered}
$$

Lemma 3 For the polynomial cost with $\varrho=2, \beta=\frac{1}{2}$, we have $\underline{\mathcal{E}}(x)=\mathcal{O}(\sqrt{x})$, and hence $c(x, u) \leq c^{\circ}(x, u)+\mathcal{O}(\sqrt{x})$.

$$
\begin{aligned}
\mathcal{D}_{u} J^{*}(x):= & \mathrm{E}_{x, u}\left[J^{*}(Q(1))-J^{*}(Q(0))\right] \\
= & \nabla J^{*}(x) \cdot(-u+\alpha) \\
& \quad+\frac{1}{2} \mathrm{E}\left[\nabla^{2} J^{*}(\bar{Q}) \cdot(-u+A(1))^{2}\right] x-u+A(1) \leq Q \leq x \\
\leq & \nabla J^{*}(x) \cdot(-u+\alpha) \quad \text { second derivative } \nabla^{2} J^{*} \text { is non-increasing. } \\
& +\frac{1}{2} \mathrm{E}\left[\nabla^{2} J^{*}(x-u) \cdot(-u+A(1))^{2}\right]
\end{aligned}
$$

$$
\begin{array}{r}
\min _{u}\left(c(x, u)+\nabla J^{*}(x) \cdot \bar{f}(x, u)\right)=0 \\
\approx c(x, u)+\mathcal{D}_{u} J^{*}(x) \\
\mathcal{E}(x, u)=c(x, u)+\mathcal{D}_{u} J^{*}(x)
\end{array}
$$

Lemma 3 For the polynomial cost with $\varrho=2, \beta=\frac{1}{2}$, we have $\underline{\mathcal{E}}(x)=\mathcal{O}(\sqrt{x})$, and hence $c(x, u) \leq c^{\circ}(x, u)+\mathcal{O}(\sqrt{x})$.

$$
\begin{aligned}
\mathcal{D}_{u} J^{*}(x):= & \mathrm{E}_{x, u}\left[J^{*}(Q(1))-J^{*}(Q(0))\right] \\
= & \nabla J^{*}(x) \cdot(-u+\alpha) \\
& \quad+\frac{1}{2} \mathrm{E}\left[\nabla^{2} J^{*}(\bar{Q}) \cdot(-u+A(1))^{2}\right] x-u+A(1) \leq Q \leq x \\
\leq & \nabla J^{*}(x) \cdot(-u+\alpha) \quad \text { second derivative } \nabla^{2} J^{*} \text { is non-increasing. } \\
& +\frac{1}{2} \mathrm{E}\left[\nabla^{2} J^{*}(x-u) \cdot(-u+A(1))^{2}\right]
\end{aligned}
$$

$$
\underline{\mathcal{E}}(x) \leq \mathcal{E}\left(x, \phi^{\mathrm{F} *}(x)\right)
$$

$$
\leq \frac{1}{2} \mathrm{E}\left[\nabla^{2} J^{*}\left(x-\phi^{\mathrm{F} *}(x)\right) \cdot\left(-\phi^{\mathrm{F} *}(x)+A(1)\right)^{2}\right] .
$$

$$
c(x, u)=c^{\circ}(x, u)+\underline{\mathcal{E}}(x)-\eta^{\circ} \leq c^{\circ}(x, u)+O(\sqrt{x})
$$

Upper Bound

$$
\begin{gathered}
\min _{u}\left(c(x, u)+\nabla J^{*}(x) \cdot \bar{f}(x, u)\right)=0 \\
\approx c(x, u)+\mathcal{D}_{u} J^{*}(x) \\
\mathcal{E}(x, u)=c(x, u)+\mathcal{D}_{u} J^{*}(x)
\end{gathered}
$$

Lemma 3 For the polynomial cost with $\varrho=2, \beta=\frac{1}{2}$, we have $\underline{\mathcal{E}}(x)=\mathcal{O}(\sqrt{x})$, and hence $c(x, u) \leq c^{\circ}(x, u)+\mathcal{O}(\sqrt{x})$.

$$
\begin{aligned}
\mathcal{D}_{u} J^{*}(x):= & \mathrm{E}_{x, u}\left[J^{*}(Q(1))-J^{*}(Q(0))\right] \\
= & \nabla J^{*}(x) \cdot(-u+\alpha) \\
& +\frac{1}{2} \mathrm{E}\left[\nabla^{2} J^{*}(\bar{Q}) \cdot(-u+A(1))^{2}\right] x-u+A(1) \leq Q \leq x \\
\leq & \nabla J^{*}(x) \cdot(-u+\alpha) \quad \text { second derivative } \nabla^{2} J^{*} \text { is non-increasing. } \\
& +\frac{1}{2} \mathrm{E}\left[\nabla^{2} J^{*}(x-u) \cdot(-u+A(1))^{2}\right]
\end{aligned}
$$

$c^{\circ}(x, u)-\eta^{\circ} \leq c(x, u) \leq c^{\circ}(x, u)+O(\sqrt{x})$

TD Learning Experiment

$$
\text { Basis functions: } \psi_{1}(x)=J^{*}(x), \quad \psi_{2}(x)=x
$$

Estimates of Coefficients for the case of quadratic cost

TD Learning with Policy Improvement

(i) Given the policy ϕ^{k}, find the approximate solution h_{TD}^{k} to Poisson's equation $\mathcal{D}_{\phi^{k}} h_{\mathrm{TD}}^{k} \approx h^{k}-c_{k}+\eta_{k}$, where $c_{k}(x)=c\left(x, \phi^{k}(x)\right)$, and η_{k} is the average cost.
(ii) Update the policy via $\phi^{k+1}(x) \in \arg \min _{u}\left\{c(x, u)+\mathcal{D}_{u} h_{\mathrm{TD}}^{k}(x)\right\}$.

Simulation result for TDPIA with the quadratic cost function, and basis $\left\{\psi_{1}, \psi_{2}\right\} \equiv\left\{J^{*}, x\right\}$.

Conclusions

The fluid value function can be used as a part of the basis for TD-learning.

- Motivated by analysis using Taylor series expansion:

The fluid value function almost solves ACOE. In particular, it solves the ACOE for a slightly different cost function; and the error term can be estimated.

- TD learning with policy improvement gives a near optimal policy in a few iterations, as shown by experiments.
- Application in power management for processors.

Q-Learning and Pontryagin's Minimum Principle

Sean Meyn

Department of Electrical and Computer Engineering and the Coordinated Science Laboratory

University of Illinois
Joint work with Prashant Mehta

Research support: NSF: ECS-0523620
AFOSR: FA9550-09-1-0190

Outline

Q-learning for nonlinear state space models

Example: Local approximation

Example: Decentralized control

Outline

Step 1: Recognize Step 2: Find a sta

 Sten 3: Ontimalit Step 5: InterpretQ-learning for nonlinear state space models

Example: Local approximation

Example: Decentralized control

What is Q learning?

Identify optimal policy based on observations:

Watkin's 1992 formulation applied to finite state space MDPs

What is Q learning?

Watkin's 1992 formulation applied to finite state space MDPs
Goal: Find the best approximation to dynamic programming equations over a parameterized class, based on observations using a non-optimal policy.

Watkin's algorithm known to be effective only for
Finite state-action space
Complete parametric family

What is Q learning?

Watkin's 1992 formulation applied to finite state space MDPs
Goal: Find the best approximation to dynamic programming equations over a parameterized class, based on observations using a non-optimal policy.

Watkin's algorithm known to be effective only for
Finite state-action space
Complete parametric family
Extensions: when cost depends on control, but dynamics are oblivious

Approach: Similar to differential dynamic programming

What is Q learning?

Watkin's 1992 formulation applied to finite state space MDPs

This lecture:
Deterministic formulation: Nonlinear system on Euclidean space,

$$
\frac{d}{d t} x(t)=f(x(t), u(t)), \quad t \geq 0
$$

Infinite-horizon discounted cost criterion,

$$
J^{*}(x)=\inf \int_{0}^{\infty} e^{-\gamma s} c(x(s), u(s)) d s, \quad x(0)=x
$$

with c a non-negative cost function.

What is Q learning?

Deterministic formulation: Nonlinear system on Euclidean space,

$$
\frac{d}{d t} x(t)=f(x(t), u(t)), \quad t \geq 0
$$

Infinite-horizon discounted cost criterion,

$$
J^{*}(x)=\inf \int_{0}^{\infty} e^{-\gamma s} c(x(s), u(s)) d s, \quad x(0)=x
$$

with c a non-negative cost function.
Differential generator: For any smooth function h,

$$
\mathcal{D}_{u} h(x):=(\nabla h(x))^{T} f(x, u)
$$

What is Q learning?

Deterministic formulation: Nonlinear system on Euclidean space,

$$
\frac{d}{d t} x(t)=f(x(t), u(t)), \quad t \geq 0
$$

Infinite-horizon discounted cost criterion,

$$
J^{*}(x)=\inf \int_{0}^{\infty} e^{-\gamma s} c(x(s), u(s)) d s, \quad x(0)=x
$$

with c a non-negative cost function.
Differential generator: For any smooth function h,

$$
\mathcal{D}_{u} h(x):=(\nabla h(x))^{T} f(x, u)
$$

HJB equation: $\quad \min _{u}\left(c(x, u)+\mathcal{D}_{u} J^{*}(x)\right)=\gamma J^{*}(x)$

What is Q learning?

Deterministic formulation: Nonlinear system on Euclidean space,

$$
\frac{d}{d t} x(t)=f(x(t), u(t)), \quad t \geq 0
$$

Infinite-horizon discounted cost criterion,

$$
J^{*}(x)=\inf \int_{0}^{\infty} e^{-\gamma s} c(x(s), u(s)) d s, \quad x(0)=x
$$

with c a non-negative cost function.
Differential generator: For any smooth function h,

$$
\mathcal{D}_{u} h(x):=(\nabla h(x))^{T} f(x, u)
$$

HJB equation: $\quad \min _{u}\left(c(x, u)+\mathcal{D}_{u} J^{*}(x)\right)=\gamma J^{*}(x)$

The Q-function of Q-learning is this function of two variables

Q learning - Steps towards an algorithm

Sequence of five steps:

Step 1: Recognize fixed point equation for the Q-function Step 2: Find a stabilizing policy that is ergodic Step 3: Optimality criterion - minimize Bellman error Step 4: Adjoint operation Step 5: Interpret and simulate!

Q learning - Steps towards an algorithm

Sequence of five steps:

Step 1: Recognize fixed point equation for the Q-function Step 2: Find a stabilizing policy that is ergodic Step 3: Optimality criterion - minimize Bellman error Step 4: Adjoint operation Step 5: Interpret and simulate!

Goal - seek the best approximation, within a parameterized class

$$
H^{\theta}(x, u)=\theta^{T} \psi(x, u), \quad \theta \in \mathbb{R}^{d}
$$

Q learning - Steps towards an algorithm

Step 1: Recognize fixed point equation for the Q-function
Q-function: $\quad H^{*}(x, u)=c(x, u)+\mathcal{D}_{u} J^{*}(x)$ Its minimum: $\quad \underline{H}^{*}(x):=\min _{u \in \mathrm{U}} H^{*}(x, u)=\gamma J^{*}(x)$

Fixed point equation:

$$
\mathcal{D}_{u} \underline{H}^{*}(x)=-\gamma\left(c(x, u)-H^{*}(x, u)\right)
$$

Q learning - Steps towards an algorithm

Step 1: Recognize fixed point equation for the Q-function
Q-function: $\quad H^{*}(x, u)=c(x, u)+\mathcal{D}_{u} J^{*}(x)$ Its minimum: $\quad \underline{H}^{*}(x):=\min _{u \in \mathrm{U}} H^{*}(x, u)=\gamma J^{*}(x)$

Fixed point equation:

$$
\mathcal{D}_{u} \underline{H}^{*}(x)=-\gamma\left(c(x, u)-H^{*}(x, u)\right)
$$

Key observation for learning: For any input-output pair,

$$
\mathcal{D}_{u} \underline{H}^{*}(x)=\left.\frac{d}{d t} \underline{H}^{*}(x(t))\right|_{\substack{x=x(t) \\ u=u(t)}}
$$

Q learning-LQR example

Linear model and quadratic cost,

Cost:

$$
c(x, u)=\frac{1}{2} x^{T} Q x+\frac{1}{2} u^{T} R u
$$

Q-function: $\quad H^{*}(x)=c(x, u)+(A x+B u)^{T} P^{*} x$

Q learning-LQR example

Linear model and quadratic cost,

Cost:

$$
c(x, u)=\frac{1}{2} x^{T} Q x+\frac{1}{2} u^{T} R u
$$

Q-function: $\quad H^{*}(x)=c(x, u)+(A x+B u)^{T} P^{*} x$
Solves Riccatti eqn
Q-function approx:

$$
H^{\theta}(x, u)=c(x, u)+\frac{1}{2} \sum_{i=1}^{d_{x}} \theta_{i}^{x} x^{T} E^{i} x+\sum_{j=1}^{d_{x u}} \theta_{j}^{x} x^{T} F^{i} u
$$

Minimum:

$$
\underline{H}^{\theta}(x)=\frac{1}{2} x^{T}\left(Q+E^{\theta}-F^{\theta^{T}} R^{-1} F^{\theta}\right) x
$$

Minimizer:

$$
u^{\theta}(x)=\phi^{\theta}(x)=-R^{-1} F^{\theta} x
$$

Q learning - Steps towards an algorithm

Step 2: Stationary policy that is ergodic?
Assume the LLN holds for continuous functions

$$
F: \mathbb{R}^{\ell} \times \mathbb{R}^{\ell_{u}} \rightarrow \mathbb{R}
$$

As $T \rightarrow \infty$,

$$
\frac{1}{T} \int_{0}^{T} F(x(t), u(t)) d t \longrightarrow \int_{\mathbf{X} \times \mathrm{U}} F(x, u) \varpi(d x, d u)
$$

Q learning - Steps towards an algorithm

Step 2: Stationary policy that is ergodic?
Suppose for example the input is scalar, and the system is stable [Bounded-input/Bounded-state]
Can try a linear combination of sinusouids

Q learning - Steps towards an algorithm

Step 2: Stationary policy that is ergodic?
Suppose for example the input is scalar, and the system is stable
 [Bounded-input/Bounded-state]

> Can try a linear combination of sinusouids

$$
u(t)=A(\sin (t)+\sin (\pi t)+\sin (e t))
$$

Q learning - Steps towards an algorithm

Step 3: Bellman error

$$
\mathcal{L}^{\theta}(x, u):=\mathcal{D}_{u} \underline{H}^{\theta}(x)+\gamma\left(c-H^{\theta}\right), \quad \theta \in \mathbb{R}^{d}
$$

Based on observations, minimize the mean-square Bellman error:

$$
\mathcal{E}_{\text {Bell }}(\theta):=\int\left[\mathcal{L}^{\theta}\right]^{2} \varpi(d x, d u):=\left\langle\mathcal{L}^{\theta}, \mathcal{L}^{\theta}\right\rangle_{\varpi}
$$

First order condition for optimality: $\quad\left\langle\mathcal{L}^{\theta}, \mathcal{D} \underline{\psi}_{i}^{\theta}-\gamma \psi_{i}^{\theta}\right\rangle_{\varpi}=0$

$$
\begin{aligned}
& \text { with } \underline{\psi}_{i}^{\theta}(x)=\psi_{i}^{\theta}\left(x, \phi^{\theta}(x)\right), \\
& \mathcal{D}_{u} \underline{H}^{\theta}(x)=\left.\frac{d}{d t} \underline{H}^{\theta}(x(t))\right|_{\substack{x=x(t) \\
u=u(t)}} \\
& \mathcal{D}_{u} \underline{\psi}_{i}^{\theta}(x)=\left.\frac{d}{d t} \underline{\psi}_{i}^{\theta}(x(t))\right|_{\substack{x=x(t) \\
u=u(t)}}
\end{aligned}
$$

Q learning - Convex Reformulation

Step 3: Bellman error

$$
\mathcal{L}^{\theta}(x, u):=\mathcal{D}_{u} \underline{H}^{\theta}(x)+\gamma\left(c-H^{\theta}\right), \quad \theta \in \mathbb{R}^{d}
$$

Based on observations, minimize the mean-square Bellman error:

$$
\begin{aligned}
& \mathcal{E}_{\mathrm{Bell}}(\theta)::=\int\left[\mathcal{L}^{\theta}\right]^{2} \varpi(d x, d u):=\left\langle\mathcal{L}^{\theta}, \mathcal{L}^{\theta}\right\rangle_{\varpi} \\
& \mathcal{L}^{\theta}(x, u):=\mathcal{D}_{u} G^{\theta}(x)+\gamma\left(c-H^{\theta}\right), \quad \theta \in \mathbb{R}^{d} \\
& G^{\theta}(x) \leq H^{\theta}(x, u), \quad \text { all } x, u
\end{aligned}
$$

Q learning-LQR example

Linear model and quadratic cost,

Cost:

$$
c(x, u)=\frac{1}{2} x^{T} Q x+\frac{1}{2} u^{T} R u
$$

Q-function: $\quad H^{*}(x)=c(x, u)+(A x+B u)^{T} P^{*} x$
Solves Riccatti eqn
Q-function approx:

$$
H^{\theta}(x, u)=c(x, u)+\frac{1}{2} \sum_{i=1}^{d_{x}} \theta_{i}^{x} x^{T} E^{i} x+\sum_{j=1}^{d_{x u}} \theta_{j}^{x} x^{T} F^{i} u
$$

Approximation to minimum

$$
G^{\theta}(x)=\frac{1}{2} x^{T} G^{\theta} x
$$

Minimizer:

$$
u^{\theta}(x)=\phi^{\theta}(x)=-R^{-1} F^{\theta} x
$$

Q learning - Steps towards an algorithm

Step 4: Causal smoothing to avoid differentiation
For any function of two variables, $g: \mathbb{R}^{\ell} \times \mathbb{R}^{\ell_{w}} \rightarrow \mathbb{R}$ Resolvent gives a new function,

$$
R_{\beta} g(x, w)=\int_{0}^{\infty} e^{-\beta t} g(x(t), \xi(t)) d t
$$

Q learning - Steps towards an algorithm

Step 4: Causal smoothing to avoid differentiation
For any function of two variables, $g: \mathbb{R}^{\ell} \times \mathbb{R}^{\ell_{w}} \rightarrow \mathbb{R}$ Resolvent gives a new function,

$$
R_{\beta} g(x, w)=\int_{0}^{\infty} e^{-\beta t} g(x(t), \xi(t)) d t, \quad \beta>0
$$

controlled using the nominal policy

$$
u(t)=\phi(x(t), \xi(t)), \quad t \geq 0
$$

stabilizing \& ergodic

Q learning - Steps towards an algorithm

Step 4: Causal smoothing to avoid differentiation
For any function of two variables, $g: \mathbb{R}^{\ell} \times \mathbb{R}^{\ell_{w}} \rightarrow \mathbb{R}$ Resolvent gives a new function,

$$
R_{\beta} g(x, w)=\int_{0}^{\infty} e^{-\beta t} g(x(t), \xi(t)) d t, \quad \beta>0
$$

Resolvent equation:

$$
R_{\beta} \mathcal{D}=\beta R_{\beta}-I
$$

Q learning - Steps towards an algorithm

Step 4: Causal smoothing to avoid differentiation
For any function of two variables, $g: \mathbb{R}^{\ell} \times \mathbb{R}^{\ell_{w}} \rightarrow \mathbb{R}$ Resolvent gives a new function,

$$
R_{\beta} g(x, w)=\int_{0}^{\infty} e^{-\beta t} g(x(t), \xi(t)) d t, \quad \beta>0
$$

Resolvent equation:

$$
R_{\beta} \mathcal{D}=\beta R_{\beta}-I
$$

Smoothed Bellman error:

$$
\begin{aligned}
\mathcal{L}^{\theta, \beta} & =R_{\beta} \mathcal{L}^{\theta} \\
& =\left[\beta R_{\beta}-I\right] \underline{H}^{\theta}+\gamma R_{\beta}\left(c-H^{\theta}\right)
\end{aligned}
$$

Q learning - Steps towards an algorithm

Smoothed Bellman error:

$$
\begin{aligned}
\mathcal{E}_{\beta}(\theta) & :=\frac{1}{2}\left\|\mathcal{L}^{\theta, \beta}\right\|_{\varpi}^{2} \\
\nabla \mathcal{E}_{\beta}(\theta) & =\left\langle\mathcal{L}^{\theta, \beta}, \nabla_{\theta} \mathcal{L}^{\theta, \beta}\right\rangle_{\varpi} \\
& =\text { zero at an optimum }
\end{aligned}
$$

Q learning - Steps towards an algorithm

Smoothed Bellman error:

$$
\begin{aligned}
\mathcal{E}_{\beta}(\theta) & :=\frac{1}{2}\left\|\mathcal{L}^{\theta, \beta}\right\|_{\varpi}^{2} \\
\nabla \mathcal{E}_{\beta}(\theta) & =\left\langle\mathcal{L}^{\theta, \beta}, \nabla_{\theta} \mathcal{L}^{\theta, \beta}\right\rangle_{\varpi} \\
& =\text { zero at an optimum }
\end{aligned}
$$

$$
\text { Involves terms of the form }\left\langle R_{\beta} g, R_{\beta} h\right\rangle
$$

Q learning - Steps towards an algorithm

Smoothed Bellman error: $\quad \mathcal{E}_{\beta}(\theta):=\frac{1}{2}\left\|\mathcal{L}^{\theta, \beta}\right\|_{\varpi}^{2}$

$$
\nabla \mathcal{E}_{\beta}(\theta)=\left\langle\mathcal{L}^{\theta, \beta}, \nabla_{\theta} \mathcal{L}^{\theta, \beta}\right\rangle_{\varpi}
$$

Adjoint operation:

$$
\begin{aligned}
R_{\beta}^{\dagger} R_{\beta} & =\frac{1}{2 \beta}\left(R_{\beta}^{\dagger}+R_{\beta}\right) \\
\left\langle R_{\beta} g, R_{\beta} h\right\rangle & =\frac{1}{2 \beta}\left(\left\langle g, R_{\beta}^{\dagger} h\right\rangle+\left\langle h, R_{\beta}^{\dagger} g\right\rangle\right)
\end{aligned}
$$

Q learning - Steps towards an algorithm

Smoothed Bellman error: $\quad \mathcal{E}_{\beta}(\theta):=\frac{1}{2}\left\|\mathcal{L}^{\theta, \beta}\right\|_{\varpi}^{2}$

$$
\nabla \mathcal{E}_{\beta}(\theta)=\left\langle\mathcal{L}^{\theta, \beta}, \nabla_{\theta} \mathcal{L}^{\theta, \beta}\right\rangle_{\varpi}
$$

Adjoint operation:

$$
\begin{aligned}
R_{\beta}^{\dagger} R_{\beta} & =\frac{1}{2 \beta}\left(R_{\beta}^{\dagger}+R_{\beta}\right) \\
\left\langle R_{\beta} g, R_{\beta} h\right\rangle & =\frac{1}{2 \beta}\left(\left\langle g, R_{\beta}^{\dagger} h\right\rangle+\left\langle h, R_{\beta}^{\dagger} g\right\rangle\right)
\end{aligned}
$$

Adjoint realization: time-reversal

$$
R_{\beta}^{\dagger} g(x, w)=\int_{0}^{\infty} e^{-\beta t} \mathrm{E}_{x, w}\left[g\left(x^{\circ}(-t), \xi^{\circ}(-t)\right)\right] d t
$$

$$
\text { expectation conditional on } x^{\circ}(0)=x, \xi^{\circ}(0)=w
$$

Q learning - Steps towards an algorithm

After Step 5: Not quite adaptive control:

Ergodic input applied

Q learning - Steps towards an algorithm

After Step 5: Not quite adaptive control:

Ergodic input applied
Based on observations minimize the mean-square Bellman error:

$$
\begin{aligned}
\mathcal{E}_{\mathrm{Bell}}(\theta) & :=\int\left[\mathcal{L}^{\theta}\right]^{2} \varpi(d x, d u) \\
\mathcal{L}^{\theta}(x, u) & :=\mathcal{D}_{u} \underline{H}^{\theta}(x)+\gamma\left(c-H^{\theta}\right), \quad \theta \in \mathbb{R}^{d}
\end{aligned}
$$

Deterministic Stochastic Approximation

Gradient descent:

$$
\frac{d}{d t} \theta=-\varepsilon\left\langle\mathcal{L}^{\theta}, \mathcal{D}_{u} \nabla_{\theta} \underline{H}^{\theta}-\gamma \nabla_{\theta} H^{\theta}\right\rangle_{\varpi}
$$

Converges* to the minimizer of the mean-square Bellman error:

$$
\begin{aligned}
\mathcal{E}_{\mathrm{Bell}}(\theta) & :=\int\left[\mathcal{L}^{\theta}\right]^{2} \varpi(d x, d u) \\
\mathcal{L}^{\theta}(x, u) & :=\mathcal{D}_{u} \underline{H}^{\theta}(x)+\gamma\left(c-H^{\theta}\right)
\end{aligned}
$$

$$
\left.\frac{d}{d t} h(x(t))\right|_{\substack{x=x(t) \\ w=\xi(t)}}=\mathcal{D}_{u} h(x)
$$

Deterministic Stochastic Approximation

Stochastic Approximation

$$
\begin{aligned}
& \frac{d}{d t} \theta=-\varepsilon_{t} \mathcal{L}_{t}^{\theta}\left(\frac{d}{d t} \nabla_{\theta} \underline{H}^{\theta}\left(x^{\circ}(t)\right)-\gamma \nabla_{\theta} H^{\theta}\left(x^{\circ}(t), u^{\circ}(t)\right)\right) \\
& \mathcal{L}_{t}^{\theta}:=\frac{d}{d t} \underline{H}^{\theta}\left(x^{\circ}(t)\right)+\gamma\left(c\left(x^{\circ}(t), u^{\circ}(t)\right)-H^{\theta}\left(x^{\circ}(t), u^{\circ}(t)\right)\right)
\end{aligned}
$$

Gradient descent:

$$
\frac{d}{d t} \theta=-\varepsilon\left\langle\mathcal{L}^{\theta}, \mathcal{D}_{u} \nabla_{\theta} \underline{H}^{\theta}-\gamma \nabla_{\theta} H^{\theta}\right\rangle_{\varpi}
$$

Mean-square Bellman error:

$$
\left.\frac{d}{d t} h(x(t))\right|_{\substack{x=x(t) \\ w=\xi(t)}}=\mathcal{D}_{u} h(x)
$$

$$
\begin{aligned}
\mathcal{E}_{\mathrm{Bell}}(\theta) & :=\int\left[\mathcal{L}^{\theta}\right]^{2} \varpi(d x, d u) \\
\mathcal{L}^{\theta}(x, u) & :=\mathcal{D}_{u} \underline{H}^{\theta}(x)+\gamma\left(c-H^{\theta}\right)
\end{aligned}
$$

Outline

Q-learning for nonlinear state space models

Example: Local approximation

Example: Decentralized control

Q learning - Local Learning

Cubic nonlinearity:

$$
\frac{d}{d t} x=-x^{3}+u, \quad c(x, u)=\frac{1}{2} x^{2}+\frac{1}{2} u^{2}
$$

Q learning - Local Learning

Cubic nonlinearity: $\quad \frac{d}{d t} x=-x^{3}+u, \quad c(x, u)=\frac{1}{2} x^{2}+\frac{1}{2} u^{2}$
HJB:

$$
\min _{u}\left(\frac{1}{2} x^{2}+\frac{1}{2} u^{2}+\left(-x^{3}+u\right) \nabla J^{*}(x)\right)=\gamma J^{*}(x)
$$

Q learning - Local Learning

Cubic nonlinearity: $\quad \frac{d}{d t} x=-x^{3}+u, \quad c(x, u)=\frac{1}{2} x^{2}+\frac{1}{2} u^{2}$
HJB:

$$
\min _{u}\left(\frac{1}{2} x^{2}+\frac{1}{2} u^{2}+\left(-x^{3}+u\right) \nabla J^{*}(x)\right)=\gamma J^{*}(x)
$$

Basis:

$$
H^{\theta}(x, u)=c(x, u)+\theta^{x} x^{2}+\theta^{u u} \frac{x}{1+2 x^{2}} u
$$

Q learning - Local Learning

Cubic nonlinearity: $\quad \frac{d}{d t} x=-x^{3}+u, \quad c(x, u)=\frac{1}{2} x^{2}+\frac{1}{2} u^{2}$
HJB:

$$
\min _{u}\left(\frac{1}{2} x^{2}+\frac{1}{2} u^{2}+\left(-x^{3}+u\right) \nabla J^{*}(x)\right)=\gamma J^{*}(x)
$$

Basis:

$$
H^{\theta}(x, u)=c(x, u)+\theta^{*} x^{2}+\theta^{u x} \frac{x}{1+2 x^{2}} u
$$

Low amplitude input

High amplitude input

$$
u(t)=A(\sin (t)+\sin (\pi t)+\sin (e t))
$$

Outline

Q-learning for nonlinear state space models

Example: Local approximation

Example: Decentralized control

Multi-agent model

M. Huang, P. E. Caines, and R. P. Malhame. Large-population cost-coupled LQG problems with nonuniform agents: Individual-mass behavior and decentralized ε-Nash equilibria. IEEE Trans. Auto. Control, 52(9):1560-1571, 2007.

Huang et. al. Local optimization for global coordination

Multi-agent model

Model:Linear autonomous models - global cost objective
HJB: Individual state + global average
Basis: Consistent with low dimensional LQG model
Results from five agent model:

Multi-agent model

Model:Linear autonomous models - global cost objective
HJB: Individual state + global average
Basis: Consistent with low dimensional LQG model
Results from five agent model:

Estimated state feedback gains
_ $k_{x}^{i} \quad$ (individual state)
$\ldots k_{z}^{i} \quad$ (ensemble state)

Gains for agent 4: Q-learning sample paths and gains predicted from ∞-agent limit

Outline

$? \rightarrow$ Coarse models - what to do with them?

Q-learning for nonlinear state space models

Example: Local approximation

$+\%$
Example: Decentralized control
... Conclusions

Conclusions

Coarse models give tremendous insight
They are also tremendously useful for design in approximate dynamic programming algorithms

Conclusions

Coarse models give tremendous insight

They are also tremendously useful
for design in approximate dynamic programming algorithms

Q-learning is as fundamental as the Riccati equation - this should be included in our first-year graduate control courses

Conclusions

Coarse models give tremendous insight

They are also tremendously useful
for design in approximate dynamic programming algorithms

Q-learning is as fundamental as the Riccati equation - this should be included in our first-year graduate control courses

Current research: Algorithm analysis and improvements Applications in biology and economics Analysis of game-theoretic issues in coupled systems

References

W. Chen, D. Huang, A. Kulkarni, J. Unnikrishnan, Q. Zhu, P. Mehta, S. Meyn, and A. Wierman. Approximate dynamic programming using fluid and diffusion approximations with applications to power management. Accepted for inclusion in the 48th IEEE Conference on Decision and Control, December 16-18 2009.
P. Mehta and S. Meyn. Q-learning and Pontryagin's Minimum Principle. To appear in Proceedings of the 48th IEEE Conference on Decision and Control, December 16-18 2009.
R.-R. Chen and S. P. Meyn. Value iteration and optimization of multiclass queueing networks. Queueing Syst. Theory Appl., 32(1-3):65-97, 1999.
S. G. Henderson, S. P. Meyn, and V. B. Tadić. Performance evaluation and policy selection in multiclass networks. Discrete Event Dynamic Systems: Theory and Applications, 13(1-2):149-189, 2003. Special issue on learning, optimization and decision making (invited).
S. P. Meyn. The policy iteration algorithm for average reward Markov decision processes with general state space. IEEE Trans. Automat. Control, 42(12):1663-1680, 1997.
S. P. Meyn. Control Techniques for Complex Networks. Cambridge University Press, Cambridge, 2007.
C. Moallemi, S. Kumar, and B. Van Roy. Approximate and data-driven dynamic programming for queueing networks. Preprint available at http://moallemi.com/ciamac/research-interests.php, 2008.

References

[1] D. H. Jacobson. Differential dynamic programming methods for determining optimal control of non-linear systems. PhD thesis, Univ. of London, 1967
[2] D. H. Jacobson and D. Q. Mayne. Differential dynamic programming. American Elsevier Pub. Co., New York, NY, 1970.
[3] C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, King's College, Cambridge, UK, 1989.
[4] C. J. C. H. Watkins and P. Dayan. Q-learning. Machine Learning, 8(3-4):279-292, 1992.
[5] J. N. Tsitsiklis and B. Van Roy. Optimal stopping of Markov processes: Hilbert space theory, approximation algorithms, and an application to pricing high-dimensional financial derivatives. IEEE Trans. Automat. Control, 44(10):1840-1851, 1999.
[6] V. S. Borkar and S.P. Meyn. The ODE method for convergence of stochastic approximation and reinforcement learning. SIAM J. Control Optim., 38(2):447-469, 2000.
[7] H. Yu and D. P. Bertsekas. Q-learning algorithms for optimal stopping based on least squares. In Proc. European Control Conference (ECC), July 2007.
[8] C. Moallemi, S. Kumar, and B. Van Roy. Approximate and data-driven dynamic programming for queueing networks.
Preprint available at http://moallemi.com/ciamac/research-interests.php, 2008.
[9] A. Al-Tamimi, F. L. Lewis, and M. Abu-Khalaf. Brief paper: Model-free Q-learning designs for linear discrete-time zero-sum games with application to H-infinity control. Automatica, 43(3):473-481, 2007.
[10] D.Vrabie, 0. Pastravanu, M. Abu-Khalaf, and F. Lewis. Adaptive optimal control for continuous-time linear systems based on policy iteration. Automatica, 45(2):477-484, 2009.
[11] S. P. Meyn. Control Techniques for Complex Networks. Cambridge University Press, Cambridge, 2007.
[12] S. G. Henderson, S. P. Meyn, and V. B. Tadi?. Performance evaluation and policy selection in multiclass networks. Discrete Event Dynamic Systems: Theory and Applications, 13(1-2):149-189, 2003. Special issue on learning, optimization and decision making (invited).
[13] W. Chen, D. Huang, A. Kulkarni, J. Unnikrishnan, Q. Zhu, P. Mehta, S. Meyn, and A. Wierman. Approximate dynamic programming using fluid and diffusion approximations with applications to power management. 48th IEEE Conference on Decision and Control, December 16-182009.

