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11.5 Estimating a value function

Value functions have appeared in a surprising range of contexts in this book.

(i) The usual home for value functions is within the field of optimization. In the set-
ting of this book, this means MDPs. Chapter 9 provides many examples, following
the introduction for the single server queue presented in Chapter 3.

(ii) The stability theory for Markov chains and networks in this book is centered
around Condition (V3). This is closely related to Poisson’s inequality, which is
itself a generalization of the average-cost value function.

(iii) Theorem 8.4.1 contains general conditions ensuring that the h-MaxWeight policy
is stabilizing. The essence of the proof is that the function h is an approximation
to Poisson’s equation under the assumptions of the theorem.

(iv) We have just seen how approximate solutions to Poisson’s equation can be used to
dramatically accelerate simulation.



TD Learning 

Notation:    

Goal:  Find θ minimizing this error    

h  value function
h    approximation
ψ   its gradient:

L2 error:
E(θ) = h − hθ 2

π := Eπ[ h(X(0)) − hθ(X(0)) 2] (11.61)

θ

θ ψθ(x) := ∇θh
θ (x)



TD Learning 

Notation:    

Goal:  Find θ minimizing this error    

Gradient:

Solution for linear parameterization:

h  value function
h    approximation
ψ   its gradient:

L2 error:
E(θ) = h − hθ 2

π := Eπ[ h(X(0)) − hθ(X(0)) 2] (11.61)

θ

θ ψθ(x) := ∇θh
θ (x)

∇θ hθ − h 2
π = 2Eπ[(hθ(X) − h(X))ψθ(X)]

θ∗ = M−1
ψ bψ, where Mψ = E[ψ(X)ψ(X)T ]

bψ = E[h(X)ψ(X)]



TD Learning for Discounted Cost

Notation:    

Solution for linear parameterization:

h value function

θ∗ = M−1
ψ bψ, where Mψ = E[ψ(X)ψ(X)T ]

bψ = E[h(X)ψ(X)]

RγRh cγ ==

∞

t=0

(1 + γ)−t−1P t
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TD Learning for Discounted Cost

Notation:    

Hilbert space notation:

Solution for linear parameterization:

h value function

θ∗ = M−1
ψ bψ, where Mψ = E[ψ(X)ψ(X)T ]

bψ = E[h(X)ψ(X)]

RγRh cγ ==

∞

t=0

(1 + γ)−t−1P t

= Rγc ,ψ π

bψ = E[h(X)ψ(X)]

Adjoint representation:
= R ψc , πbψ

†
γ

Adjoint:  Resolvent for time-reversed process:

R†
γg (x) =

∞

t=0

(1 + γ)−t−1E[g(X(−t)) X(0) = x], x ∈ X



TD Learning for Discounted Cost

ϕ(k) =

k

t=0

(1 + γ)−t−1ψ (X(k − t))

Algorithm:    

Elligibility vectors:

Solution for linear parameterization:
θ∗ = M−1

ψ bψ, where Mψ = E[ψ(X)ψ(X)T ]

bψ = E[h(X)ψ(X)]

Law of Large Number approximations:

= R ψc , π
†
γ

R†
γg (x) =

∞

t=0

(1 + γ)−t−1E[g(X(−t)) X(0) = x], x ∈ X

bn
ψ =

1

n

n∑

k=1

ϕ(k)c(X(k))

Mn
ψ =

1

n

n∑

k=1

ψ(k)ψ(k)T



TD Learning for Discounted Cost

ϕ(k) =

k

t=0

(1 + γ)−t−1ψ (X(k − t))

Algorithm:    

Elligibility vectors:

Solution for linear parameterization:
θ∗ = M−1

ψ bψ, where Mψ = E[ψ(X)ψ(X)T ]

bψ = E[h(X)ψ(X)]

Law of Large Number approximations:

Estimate:

Inverse recursively computed

= R ψc , π
†
γ

R†
γg (x) =

∞

t=0

(1 + γ)−t−1E[g(X(−t)) X(0) = x], x ∈ X

bn
ψ =

1

n

n∑

k=1

ϕ(k)c(X(k))

Mn
ψ =

1

n

n∑

k=1

ψ(k)ψ(k)T

θ(n) = [Mn
ψ ]−1bn

ψ



Approximate Dynamic Programming using
Fluid and Diffusion Approximations
      with Applications to Power Management

Wei Chen, Dayu Huang, Ankur A. Kulkarni, Jayakrishnan Unnikrishnan, Quanyan Zhu, 
Prashant Mehta, Sean Meyn, and Adam Wierman

Coordinated Science Laboratory, UIUC
Dept. of IESE, UIUC
Dept. of CS, California Inst. of Tech. 

Speaker: Dayu Huang

National Science Foundation (ECS-0523620 and CCF-0830511),
ITMANET  DARPA RK 2006-07284,  and Microsoft Research

1

1

2

2

J

xn
0 2 4 6 8 10 12 14 16 18 20

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8 9 10 x 104
−2

−1

0

1

2

3

4

 

 



Introduction

MDP model

i.i.d

Control

Cost

Minimize average cost

GeneratorAverage Cost Optimality Equation (ACOE)

Solve ACOE and Find  

Relative value function
Generator



Introduction

MDP model

i.i.d

Control

Cost

Minimize average cost

GeneratorAverage Cost Optimality Equation (ACOE)

Solve ACOE and Find  

Relative value function
Generator



Introduction

MDP model

i.i.d

Control

Cost

Minimize average cost

GeneratorAverage Cost Optimality Equation (ACOE)

Solve ACOE and Find  

Relative value function
Generator



TD Learning

The “curse of dimensionality”:

Approximate          within a �nite-dimensional function class

  Criterion: minimize the mean-squre error

solved by stochastic approximation algorithms

Complexity of solving ACOE grows exponentially with 
the dimension of the state space.

Problem: How to select the basis functions                                   ?  

key to the success of TD learning
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Power Management via Speed Scaling

Single processor

Control the processing speed to balance delay and energy costs

  processing rate 
  determined by the current power

Processor design: polynomial cost

We also consider 
for wireless communication applications 

Bansal, Kimbrel and Pruhs 2007

Wierman, Andrew and Tang 2009

This talk

job arrivals

Kaxiras and Martonosi 2008
Wierman, Andrew and Tang 2009

Mannor, Menache and Shimkin 2005
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Fluid Model

Fluid model:

Total Cost Optimality Equation (TCOE) for the �uid model:

MDP
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Why Fluid Model?

First order Taylor series approximation

MDP

Simple but
powerful idea!

almost solves the ACOE

TCOE

ACOE
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Value Iteration
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Initialization: V0 0

n

V0 =

(See also [Chen and Meyn 1999])

https://netfiles.uiuc.edu/meyn/www/spm_files/Papers_pdf/vi.pdf
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Structure Results on the Fluid Solution
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Upper Bound

c◦(x,u) − η◦ ≤ c(x,u) ≤ c◦(x,u) + O(
√

x)



TD Learning Experiment 

Estimates of Coe�cients for the case of quadratic cost
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TD Learning with Policy Improvement

Nearly optimal after just a few iterations

Average cost at stage 
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Conclusions

The �uid value function can be used as a part of the basis for TD-learning.

Motivated by analysis using Taylor series expansion:

The �uid value function almost solves ACOE. In particular,
it solves the ACOE for a slightly di�erent cost function; and
the error term can be estimated.  

TD learning with policy improvement gives a near optimal policy 
in a few iterations, as shown by experiments.

Application in power management for processors.
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Identify optimal policy based on observations:Identify optimal policy based on observations:
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Goal:  Find the best approximation to dynamic programming 
equations over a parameterized class,  based on observations
using a non-optimal policy.

Watkin’s algorithm known to be effective only for
 Finite state-action space
 Complete parametric family

Extensions: when cost depends on control, 
 but dynamics are oblivious

Approach:  Similar to differential dynamic programming
Differential dynamic programming 
D. H. Jacobson and D. Q. Mayne
American Elsevier Pub. Co.  1970

Watkins and P. Dayan,  1992

Duff, 1995

Tsitsiklis and Van Roy,  1999

Yu and Bertsekas, 2007
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Measured behavior

learn
optimal 
policy Inputs

Outputs

Complex system

Watkin’s 1992 formulation applied to finite state space MDPsWatkin’s 1992 formulation applied to finite state space MDPs

Deterministic formulation:  Nonlinear system on Euclidean space,Deterministic formulation:  Nonlinear system on Euclidean space,

This lecture:This lecture:

Infinite-horizon discounted cost criterion,Infinite-horizon discounted cost criterion,

with c a non-negative cost function.with c a non-negative cost function.

d
dtx(t) = f(x(t),u(t)), t≥ 0

J∗(x) = inf
∞

0

e−γsc(x(s),u(s)) ds, x(0) = x
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Step 4:  Adjoint operation
Step 5:  Interpret and simulate! 
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dtH
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Linear model and quadratic cost,

Cost:

Q-function:

Q-function approx:

Minimum:

Minimizer:

Hθ(x) = 1
2xT Q + Eθ − F θT

R−1F θ x

φθ(x) =uθ(x) = −R−1F θx

c(x, u) = 1
2xTQx + 1

2uTRu

H∗(x) = c(x, u) + (Ax + Bu)TP ∗x

Solves Riccatti eqn

Hθ(x, u) = c(x, u) + 1
2

dx

i=1

θx
ix

TEix +

dxu

j=1

θx
jx

TF iu
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AsAs

F : R × R u → R
T → ∞,

1

T

T

0

F (x(t), u(t)) dt −→
X×U

F (x, u) (dx, du)
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θ θ,

with ψθ θ
i (x) = ψθ

i (x, φ (x)),
1 ≤ i ≤ d

θ,Duψθ
i − γψθ

i = 0
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Q learning - Convex Reformulation

−1 0 1
−1

0

1

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Optimal policy

Step 2:  Find a stabilizing policy that is ergodic   
Step 3:  Optimality criterion - minimize Bellman error
Step 4:  Adjoint operation
Step 5:  Interpret and simulate! 

Based on observations, minimize the mean-square Bellman error:Based on observations, minimize the mean-square Bellman error:

θ θ,

G
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Step 2:  Find a stabilizing policy that is ergodic   
Step 3:  Optimality criterion - minimize Bellman error
Step 4:  Adjoint operation
Step 5:  Interpret and simulate! 

Linear model and quadratic cost,

Cost:

Q-function:

Q-function approx:

Approximation to minimum

Minimizer:

G θ(x) = 1
2xT Gθ x

φθ(x) =uθ(x) = −R−1F θx

c(x, u) = 1
2xTQx + 1

2uTRu

H∗(x) = c(x, u) + (Ax + Bu)TP ∗x

Solves Riccatti eqn

Hθ(x, u) = c(x, u) + 1
2

dx

i=1

θx
ix

TEix +

dxu

j=1

θx
jx

TF iu
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g : R × R w → R

Rβg (x, w) =
∞

0

e−βtg(x(t), ξ(t)) dt

Step 4:  Causal smoothing to avoid differentiationStep 4:  Causal smoothing to avoid differentiation

For any function of two variables,
Resolvent gives a new function,
For any function of two variables,
Resolvent gives a new function,

Skip to examples



Q learning - Steps towards an algorithm

g : R × R w → R

Rβg (x, w) =
∞

0

e−βtg(x(t), ξ ,(t)) dt β > 0

Step 4:  Causal smoothing to avoid differentiationStep 4:  Causal smoothing to avoid differentiation

For any function of two variables,
Resolvent gives a new function,
For any function of two variables,
Resolvent gives a new function,

controlled using the nominal policycontrolled using the nominal policy

stabilizing & ergodicstabilizing & ergodic

u(t) = φ(x(t), ξ(t)), t ≥ 0
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g : R × R w → R

Rβg (x, w) =
∞

0

e−βtg(x(t), ξ ,(t)) dt β > 0

Step 4:  Causal smoothing to avoid differentiationStep 4:  Causal smoothing to avoid differentiation

For any function of two variables,
Resolvent gives a new function,
For any function of two variables,
Resolvent gives a new function,

Resolvent equation:Resolvent equation:



Q learning - Steps towards an algorithm

g : R × R w → R

Rβg (x, w) =
∞

0

e−βtg(x(t), ξ ,(t)) dt β > 0

Lθ,β = RβLθ

= [βRβ − I]Hθ + γRβ(c − Hθ)

Step 4:  Causal smoothing to avoid differentiationStep 4:  Causal smoothing to avoid differentiation

For any function of two variables,
Resolvent gives a new function,
For any function of two variables,
Resolvent gives a new function,

Resolvent equation:Resolvent equation:

Smoothed Bellman error:Smoothed Bellman error:
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Eβ(θ) := 1
2

θ,β 2

∇Eβ(θ) =

  =

θ,β ,∇θLθ,β

Smoothed Bellman error:Smoothed Bellman error:

zero   at an optimumzero   at an optimum
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Q learning - Steps towards an algorithm

Eβ(θ) := 1
2

θ,β 2

∇Eβ(θ) =

  =

θ,β ,∇θLθ,β

Smoothed Bellman error:Smoothed Bellman error:

zero   at an optimumzero   at an optimum

Step 4:  Causal smoothing to avoid differentiationStep 4:  Causal smoothing to avoid differentiation

Involves terms of the formInvolves terms of the form Rβg,R βh



Q learning - Steps towards an algorithm

Eβ(θ) := 1
2

θ,β 2

∇Eβ(θ) = θ,β ,∇θLθ,β

R†
βRβ = (R†

β + Rβ)

Rβg,R βh =
1

2β
g,R †

βh + h,R †
βg

1

2β

Smoothed Bellman error:Smoothed Bellman error:

Adjoint operation:  Adjoint operation:  

Step 4:  Causal smoothing to avoid differentiationStep 4:  Causal smoothing to avoid differentiation



Q learning - Steps towards an algorithm

Eβ(θ) := 1
2

θ,β 2

∇Eβ(θ) = θ,β ,∇θLθ,β

R†
βRβ = (R†

β + Rβ)

Rβg,R βh =
1

2β
g,R †

βh + h,R †
βg

1

2β

Smoothed Bellman error:Smoothed Bellman error:

Adjoint operation:  Adjoint operation:  

Step 4:  Causal smoothing to avoid differentiationStep 4:  Causal smoothing to avoid differentiation

Adjoint realization:  time-reversal  Adjoint realization:  time-reversal  

R†
βg (x, w) =

∞

0

e−βtEx, w [g(x◦(−t), ξ◦(−t))] dt

expectation conditional on x◦(0) = x, ξ◦(0) = w.
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Ergodic input applied
Based on observations minimize the mean-square Bellman error:
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Desired behavior

Measured behavior

Compare
and learn Inputs

Outputs

Complex system
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Gradient descent:Gradient descent:

Converges* to the minimizer of the mean-square Bellman error:Converges* to the minimizer of the mean-square Bellman error:

Convergence observed in experiments!
For a convex re-formulation of 
the problem, see Mehta & Meyn 2009

*

d
dtθ = −ε θ,Du∇θH

θ − γ∇θH
θ
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Stochastic ApproximationStochastic Approximation

d
dtθ = −ε θ,Du∇θH

θ − γ∇θH
θ

Gradient descent:

Mean-square Bellman error:

d
dtθ = −εtLθ

t
d
dt∇θH

θ (x◦(t)) − γ∇θH
θ(x◦(t), u◦(t))

Lθ
t := d

dtH
θ (x◦(t))+γ(c(x◦(t) u◦(t))−Hθ(x◦(t), ◦(t)))u,
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Cubic nonlinearity:Cubic nonlinearity:
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Cubic nonlinearity:Cubic nonlinearity:

HJB:HJB:

Basis:Basis:

Desired behavior

Measured behavior
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and learn Inputs
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d
dtx = −x3 + u, c(x, u) = 1
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2u2

min
u

1
2x2 + 1

2u2 + (−x3 + u)∇J∗(x) = γJ∗(x)( )
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1 + 2x2
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Cubic nonlinearity:Cubic nonlinearity:
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u(t) = A(sin(t) + sin(πt) + sin(et))

d
dtx = −x3 + u, c(x, u) = 1

2x2 + 1
2u2

min
u

1
2x2 + 1

2u2 + (−x3 + u)∇J∗(x) = γJ∗(x)( )

Hθ(x, u) = c(x, u) + θxx2 + θxu x

1 + 2x2
u
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Multi-agent model
M. Huang, P. E. Caines, and R. P. Malhame. Large-population
cost-coupled LQG problems with nonuniform agents: Individual-mass
behavior and decentralized ε-Nash equilibria. IEEE Trans. Auto.
Control, 52(9):1560–1571, 2007.

Huang et. al.  Local optimization for global coordinationHuang et. al.  Local optimization for global coordination
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Model: Linear autonomous models - global cost objectiveModel: Linear autonomous models - global cost objective

HJB:  Individual state + global average HJB:  Individual state + global average 

Basis:  Consistent with low dimensional LQG modelBasis:  Consistent with low dimensional LQG model

Results from five agent model:Results from five agent model:
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Model: Linear autonomous models - global cost objectiveModel: Linear autonomous models - global cost objective

HJB:  Individual state + global average HJB:  Individual state + global average 

Basis:  Consistent with low dimensional LQG modelBasis:  Consistent with low dimensional LQG model

Estimated state feedback gainsEstimated state feedback gains

Gains for agent 4:  Q-learning sample paths

and gains predicted from ∞-agent limit

Gains for agent 4:  Q-learning sample paths

and gains predicted from ∞-agent limit

Results from five agent model:Results from five agent model:
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Coarse models give tremendous insight

They are also tremendously useful 
for design in approximate dynamic programming algorithms

Q-learning is as fundamental as the Riccati equation - this 
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